首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Crigler-Najjar syndrome type I (CN I) is a rare autosomal recessive disorder due to hepatic dysfunction of uridine diphospho-glucuronosyltransferase (UGT) activity toward bilirubin. Complete inactivation of this enzyme causing CN I lead to accumulation of unconjugated bilirubin in serum and bile. Here we report the results of the molecular characterization of the uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) gene in a consanguineous family of Slovak Roms and an unrelated non-Romany family with CN I. Sequence analysis of UGT1A1 gene in all four Romany patients showed mutation in exon 4, a deletion of an A at codon 407 (1220delA), not yet described in homozygous status. All analysed patients were homozygous for 1220delA mutation and their 3 healthy sibs were heterozygous. The non-Romany patient was a compound heterozygote for two different deletions, 1220delA and 717-718delAG at codon 239. In the family of his cousin a son was born affected with CN I, who was homozygote for 717-718delAG mutation. His other niece affected with CN II was heterozygote for mutation 717-718delAG but homozygote for TA insertion and enhancer substitution T-3279G. Haplotype analysis suggests that the 1220delA mutation is identical by descent in both families, though they originate from two ethnically different populations (Slovaks vs. Roms).  相似文献   

2.
Crigler-Najjar syndrome type 1 (CN-1) is a recessively inherited, potentially lethal disorder characterized by severe unconjugated hyperbilirubinemia resulting from deficiency of the hepatic enzyme bilirubin-UDP-glucuronosyltransferase. In all CN-1 patients studied, structural mutations in one of the five exons of the gene (UGT1A1) encoding the uridinediphosphoglucuronate glucuronosyltransferase (UGT) isoform bilirubin-UGT1 were implicated in the absence or inactivation of the enzyme. We report two patients in whom CN-1 is caused, instead, by mutations in the noncoding intronic region of the UGT1A1 gene. One patient (A) was homozygous for a G-->C mutation at the splice-donor site in the intron, between exon 1 and exon 2. The other patient (B) was heterozygous for an A-->G shift at the splice-acceptor site in intron 3, and in the second allele a premature translation-termination codon in exon 1 was identified. Bilirubin-UGT1 mRNA is difficult to obtain, since it is expressed in the liver only. To determine the effects of these splice-junction mutations, we amplified genomic DNA of the relevant splice junctions. The amplicons were expressed in COS-7 cells, and the expressed mRNAs were analyzed. In both cases, splice-site mutations led to the use of cryptic splice sites, with consequent deletions in the processed mRNA. This is the first report of intronic mutations causing CN-1 and of the determination of the consequences of these mutations on mRNA structure, by ex vivo expression.  相似文献   

3.
对一个中国汉族Gilbert综合征遗传家系致病基因突变位点进行鉴定,以期了解该病的分子遗传学基础。首先提取先证者基因组DNA,PCR扩增尿苷二磷酸葡萄糖醛酸转移酶UGT1A1基因的5个外显子,以琼脂糖电泳鉴定PCR产物,纯化后直接测序鉴定。基因扫描显示,与血清胆红素水平密切相关的UGT1A1基因在第1和第5外显子存在纯合突变,而 UGT1A1基因启动子区域和内含子/外显子剪接边界位点序列未检测到突变。进一步对其他家系成员该基因的相应位点进行突变检测,结果显示他们在第1和第5外显子也存在杂合突变,其中还有两个成员在启动子区域检测到(TA)插入突变。对家系成员未抗凝新鲜血液进行生化检测证实了基因突变分析的结果。综合以上结果发现该家系三种突变并存,致病因素为第1和/或第5外显子突变,为显性遗传,两种突变位点纯合导致先证者出现严重胆红素代谢功能障碍。该家系因此成为Gilbert综合征突变位点及其致病机理研究的一个典型临床病例。  相似文献   

4.
An isoform (rhesus UGT1A01) orthologus to the human UGT1A1 was cloned and sequenced from female rhesus monkey liver cDNA using primers designed from the human nucleotide sequences. Open reading frame analysis of the PCR-generated product encodes a 533-amino acid protein with a proposed 27-residue signal peptide. Nucleotide sequence comparison of rhesus UGT1A01 to other rhesus UGT1A isoforms detected a single-transition mutation at nucleotide 1520 (T-->C), resulting in a neutral F to S substitution at position 507. Rhesus UGT1A01 was greater than 99 and 95% identical to cynomolgus UGT1A01 and human UGT1A1, respectively. The rhesus UGT1A01 was expressed in HK-293 cells for functional analysis. Catalytic activity of UGT1A01 was determined with 7-hydroxy-4-(trifluoromethyl)-coumarin and more specific human UGT1A1 substrates (1-naphthol, beta-estradiol, 17 alpha-ethinylestradiol, and bilirubin). Expression of UGT1A01 protein was also detected by a Western blot utilizing a polyclonal antibody developed against the human UGT1A family.  相似文献   

5.
Nonpenetrance of the inherited mutation responsible for retinoblastoma has been reported. By DNA analysis in families with hereditary retinoblastoma, it is possible to identify healthy individuals in whom the mutation is nonpenetrant. This requires the use of DNA markers both within and flanking the retinoblastoma gene. We have analyzed the segregation of several markers in 19 families (69 meioses) with hereditary retinoblastoma. In two families a carrier was identified who showed nonpenetrance of the mutation predisposing to retinoblastoma. The intragenic markers were informative in 15 pedigrees. The use of flanking markers from the same chromosomal region caused an increase of the number of informative families to 18. No crossing-over within the gene was observed. In one family an inherited deletion involving one of the RB1 alleles was detected. Our findings emphasize the use of a combination of both intragenic and flanking markers to obtain both the highest reliability of carrier detection in families with hereditary retinoblastoma and an accurate estimate of the frequency of nonpenetrance.  相似文献   

6.
7.
Human UDP-glucuronosyltransferase (UGT) 1A1 is only enzyme in the conjugation of bilirubin for prevention of hyperbilirubinemia and jaundice. Deletion or mutation of the UGT1A1 gene causes Crigler-Najjar syndrome or Gilbert's syndrome. We previously reported the functional promoter region for expression of UGT1A1 [Hepatology Research 9, 152-163 (1997)]. We investigated the influence of some drugs on the transient transfection assay of the luciferase reporter gene containing the 5'-promoter region -3174/+14 of UGT1A1 in HepG2 cells. Among drugs investigated, dexamethasone was the most effective at the range of concentration of 10-100 microM, whereas stimulation by beta-estradiol was not found. We also could not find stimulation by bilirubin of the endogenous main substrate for UGT1A1. Stimulation by dexamethasone was continued for 48 hr. The luciferase reporter gene containing the 5'-region of -97/+14 was induced by dexamethasone but the gene of the 5'-region -53/+14 was not. The region -97/-53 is essential for induction by dexamethasone. This region contains HNF1 element, therefore, we speculated that dexamethasone directly and/or indirectly stimulates UGT1A1 expression through this HNF1 region in the promoter region of UGT1A1. Thus, we clarified that UGT1A1 was induced by dexamethasone and the key position was the region (-97/-53) in UGT1A1 promoter.  相似文献   

8.
M R Pshenichnov  Iu I Pavlov 《Genetika》1991,27(8):1336-1341
It has been shown that the rad1-5 mutation which alters excision repair in Saccharomyces cerevisiae yeast increased reversion frequency of the ochre mutation his7-1 and the frequency of intragenic mitotic recombination in the LYS2 gene induced by 2-aminofluorene and 2-acetylaminofluorene, as compared with the wild type strains activated in vitro by 39 mix from chicken liver.  相似文献   

9.
The 9 UDP-glucuronosyltranferases (UGTs) encoded by the UGT1 locus in humans are key enzymes in the metabolism of most drugs as well as endogenous substances such as bile acids, fatty acids, steroids, hormones, neurotransmitters, and bilirubin. Severe unconjugated hyperbilirubinemia in humans that suffer from Crigler-Najjar type I disease results from lesions in the UGT1A1 gene and is often fatal. To examine the physiological importance of the Ugt1 locus in mice, this locus was rendered non-functional by interrupting exon 4 to create Ugt1(-/-) mice. Because UGT1A1 in humans is responsible for 100% of the conjugated bilirubin, it followed that newborn Ugt1(-/-) mice developed serum levels of unconjugated bilirubin that were 40-60 times higher than Ugt1(+/-) or wild-type mice. The result of extreme unconjugated bilirubin in Ugt1(-/-) mice, comparable to the induced levels noted in patients with Crigler-Najjar type 1 disease, is fatal in neonatal Ugt1(-/-) mice within 2 weeks following birth. The extreme jaundice is present as a phenotype in skin color after 8 h. Neonatal Ugt1(-/-) mice exhibit no detectable UGT1A-specific RNA, which corresponds to a complete absence of UGT1A proteins in liver microsomes. Conserved glucuronidation activity attributed to the Ugt1 locus can be defined in Ugt1(-/-) mice, because UGT2-dependent glucuronidation activity is unaffected. Remarkably, the loss of UGT1A functionality in liver results in significant alterations in cellular metabolism as investigated through changes in gene expression. Thus, the loss of UGT1A function in Ugt1(-/-) mice leads to a metabolic syndrome that can serve as a model to further investigate the toxicities associated with unconjugated bilirubin and the impact of this disease in humans.  相似文献   

10.
Friedreich ataxia (FRDA) is the most common inherited ataxia. About 98% of mutant alleles have an expansion of a GAA trinucleotide repeat in intron 1 of the affected gene, FRDA. The other 2% are point mutations. Of the 17 point mutations so far described, three appear to be more common. One of these is the G130V mutation in exon 4 of FRDA. G130V, when present with an expanded GAA repeat on the other allele, is associated with an atypical FRDA phenotype. Haplotype analysis was undertaken on the four families who have been described with this mutation. The results suggest a common founder for this mutation. Although marked differences in extragenic marker haplotypes were seen in one family, similar intragenic haplotyping suggests the same mutation founder for this family with the differences explicable by two recombination events.  相似文献   

11.
Molecular genetics of unconjugated hyperbilirubinemia in Taiwanese   总被引:1,自引:0,他引:1  
Summary In bilirubin metabolism, increased destruction of erythrocytes, defect in the function of organic anion transporter polypeptide 2 (OATP2) or UDP-glucuronosyltransferase 1A1 (UGT1A1) may result in unconjugated hyperbilirubinemia. Although glucose-6-phosphate dehydrogenase (G6PD) deficiency is known to be associated with the development of neonatal hyperbilirubinemia, it was observed that in neonates severe hyperbilirubinemia caused by G6PD deficiency, without associated polymorphisms in the UGT1A1 or the OATP2 gene, was preventable. Variations at the nucleotide (nt) 388 of OATP2 gene and nt-211 of UGT1A1 gene, were found to be a risk factor for severe hyperbilirubinemia amongst Taiwanese neonates, respectively. G6PD deficiency, variations at nts 388 and 521 of OATP2 gene, and variations at nt-211 and in the promoter area of UGT1A1 gene were reported to be the risk factors for the occurrence of mild hyperbilirubinemia amongst Taiwanese adults. The status of the haplotypes of G6PD, OATP2, and UGT1A1 genes affected the odds ratio and the bilirubin levels in the hyperbilirubinemic subjects. Moreover, carriage of the variant-211 UGT1A1 allele, as well as UGT1A7*3 allele, was demonstrated to represent a risk factor for the development of, and a determinant for, metastases associated with Taiwanese colorectal-cancer patients. Further investigation is warranted to evaluate this phenomenon.  相似文献   

12.
13.
Recently we have reported that bilirubin UDP-glucuronosyltransferase (UGT1A1) is induced in rat liver by chronic ethanol treatment. Several studies have shown that Kupffer cells play a central role in the mediation of various hepatic effects of chronic alcohol consumption. In the present work, the participation of Kupffer cells in the ethanol dependent induction of UGT1A1 was investigated. A group of rats was pretreated with gadolinium chloride, a known Kupffer-cell-depleting agent. We compared the effect of chronic ethanol ingestion on UGT1A1 expression in the liver of normal and gadolinium chloride treated rats. The effect of ethanol on bilirubin glucuronidation was completely prevented in Kupffer cell deficient rats. The western and northern blot analyses showed that the increase of both the protein and mRNA of UGT1A1 was prevented in these animals. These results suggest that Kupffer cells play a major role in the mediation of ethanol-stimulated induction of UGT1A1 in liver parenchymal cells.  相似文献   

14.
Yang J  Cai L  Huang H  Liu B  Wu Q 《PloS one》2012,7(4):e33988
Vertebrates require tremendous molecular diversity to defend against numerous small hydrophobic chemicals. UDP-glucuronosyltransferases (UGTs) are a large family of detoxification enzymes that glucuronidate xenobiotics and endobiotics, facilitating their excretion from the body. The UGT1 gene cluster contains a tandem array of variable first exons, each preceded by a specific promoter, and a common set of downstream constant exons, similar to the genomic organization of the protocadherin (Pcdh), immunoglobulin, and T-cell receptor gene clusters. To assist pharmacogenomics studies in Chinese, we sequenced nine first exons, promoter and intronic regions, and five common exons of the UGT1 gene cluster in a population sample of 253 unrelated Chinese individuals. We identified 101 polymorphisms and found 15 novel SNPs. We then computed allele frequencies for each polymorphism and reconstructed their linkage disequilibrium (LD) map. The UGT1 cluster can be divided into five linkage blocks: Block 9 (UGT1A9), Block 9/7/6 (UGT1A9, UGT1A7, and UGT1A6), Block 5 (UGT1A5), Block 4/3 (UGT1A4 and UGT1A3), and Block 3' UTR. Furthermore, we inferred haplotypes and selected their tagSNPs. Finally, comparing our data with those of three other populations of the HapMap project revealed ethnic specificity of the UGT1 genetic diversity in Chinese. These findings have important implications for future molecular genetic studies of the UGT1 gene cluster as well as for personalized medical therapies in Chinese.  相似文献   

15.
16.
The domestic cat (Felis catus) shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea) and northern elephant seal (Mirounga angustirostris) showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter). Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0) as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora.  相似文献   

17.
Biliary excretion is the main route of disposal of bilirubin and impaired excretion results in jaundice, a well recognisable symptom of liver disease. Conjugation of bilirubin in the liver is essential for its clearance. The glucuronidation of bilirubin is catalysed by the microsomal UDP-glucuronosyltransferase UGT1A1. Patients with Crigler-Najjar syndrome type 1 and Gunn rats, mutant strain of the Wistar rats, bear an autosomal recessive disorder resulting in hyperbilirubinemia. The aim of this work is to add new data about activity of UGT1A1 during the perinatal period and adult life. The results showed that activity of UGT1A1 is detectable from day 22 of the gestation. After birth, activity of UGT1A1 gradually increases and reaches the levels of adult life. Furthermore, bilirubin azopigments have been separated and characterized by thin layer chromatography. We have found that concentration of samples by evaporation and ulterior storing at -20 degrees C seemed to be suitable for the maintenance of samples.  相似文献   

18.
Twenty-one polymorphic sequence variants of the RYR1 gene, including 13 restriction fragment length polymorphisms (RFLPs), were identified by sequence analysis of human ryanodine receptor (RYR1) cDNAs from three individuals predisposed to malignant hyperthermia (MH). All RFLPs were detectable in PCR-amplified products, and their segregation was consistent with our initial finding of linkage to MH in the nine families previously informative for one or more intragenic markers (MacLennan et al., 1990, Nature 343:559-561). Four amino acid substitutions were identified in the study: Arg for Gly248, Cys for Arg470, Leu for Pro1785, and Cys for Gly2059. Of 45 families tested, a single family presented the Arg for Gly248 substitution where it segregated with malignant hyperthermia, making it a candidate mutation for predisposition to MH in man. The other three polymorphic substitutions failed to segregate with malignant hyperthermia in those families in which they occurred, implying that they represent polymorphisms with little or no effect on the function of the RYR1 gene.  相似文献   

19.
Tuberous sclerosis complex is an autosomal-dominant heritable disease caused by mutations in the TSC1 and TSC2 genes. We studied a Chinese patient with sporadic tuberous sclerosis complex. The clinical features of this patient included epilepsy, hypomelanotic macules and angiofibromas on his back; a cranial CT scan showed subependymal nodules along the lateral walls of the lateral ventricles. The TSC1 and TSC2 genes were studied by PCR and direct sequencing of the entire coding region and exon-intron boundaries of these genes. A novel deletion mutation (c.1964delA) in the TSC1 gene exon 15 was identified, which was not present in his parents or 100 unrelated normal controls. This is the first report of this c.1964delA mutation of the TSC1 gene, associated with tuberous sclerosis complex, expanding the spectrum of TSC1 mutations that cause this disease.  相似文献   

20.
In cultured primary hepatocytes UDP-glucuronosyltransferase form 1A2 (UGT1A2) mRNA level is 80 times higher than that found in rat liver. We previously identified an enhancer sequence in the UGT1A2 promoter, and designated it as culture-associated expression responsive enhancer module (CEREM). Affinity chromatography with DNA fragments containing CEREM allowed enrichment of nuclear factor I (NFI) proteins from cultured hepatocytes. The NFI family is encoded by four distinct genes, NFI-A, NFI-B, NFI-C, and NFI-X. Immunoblot analysis with isoform-specific antibodies showed that NFI-A1 existed as a major component in rat liver and cultured hepatocytes. By contrast, NFI-C1 was present in rat liver but disappeared immediately upon cultivation of hepatocytes. Only trace amounts of NFI-B and NFI-X were detectable in rat liver and cultured hepatocytes. NFI-A1 elevated expression of the reporter gene that is under the control of CEREM, while NFI-C1 had an inhibitory effect. Co-expression of a constant amount of NFI-A1 with an increasing amount of NFI-C1 led to a concentration-dependent decrease in the expression of the CEREM-controlled reporter gene mediated by NFI-A1. Activation of UGT1A2 expression by NFI-A1 is suppressed by the coexistence of NFI-C1 in the liver, and culture-associated expression of UGT1A2 is triggered by the rapid disappearance of NFI-C1 in cultured hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号