首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Westover KD  Bushnell DA  Kornberg RD 《Cell》2004,119(4):481-489
Binding of a ribonucleoside triphosphate to an RNA polymerase II transcribing complex, with base pairing to the template DNA, was revealed by X-ray crystallography. Binding of a mismatched nucleoside triphosphate was also detected, but in an adjacent site, inverted with respect to the correctly paired nucleotide. The results are consistent with a two-step mechanism of nucleotide selection, with initial binding to an entry (E) site beneath the active center in an inverted orientation, followed by rotation into the nucleotide addition (A) site for pairing with the template DNA. This mechanism is unrelated to that of single subunit RNA polymerases and so defines a new paradigm for the large, multisubunit enzymes. Additional findings from these studies include a third nucleotide binding site that may define the length of backtracked RNA; DNA double helix unwinding in advance of the polymerase active center; and extension of the diffraction limit of RNA polymerase II crystals to 2.3 A.  相似文献   

4.
Sousa R 《Cell》2005,120(2):155-156
  相似文献   

5.
High-resolution analysis of lac transcription complexes inside cells   总被引:16,自引:0,他引:16  
J A Borowiec  J D Gralla 《Biochemistry》1986,25(18):5051-5057
  相似文献   

6.
The "RNA world" hypothesis rests on the assumption that RNA polymerase ribozymes can replicate RNA without the use of protein. In the laboratory, in vitro selection has been used to create primitive versions of such polymerases. The best variant to date is a ribozyme called B6.61 that can extend a RNA primer template by 20 nucleotides (nt). This polymerase has two domains: the recently crystallized Class I ligase core, responsible for phosphodiester bond formation, and the poorly characterized accessory domain that makes polymerization possible. Here we find that the accessory domain is specified by a 37-nt bulged stem-loop structure. The accessory domain is positioned by a tertiary interaction between the terminal AL4 loop of the accessory and the J3/4 triloop found within the ligase core. This docking interaction is associated with an unwinding of the A3 and A4 helixes that appear to facilitate the correct positioning of an essential 8-nt purine bulge found between the two helices. This, together with other constraints inferred from tethering the accessory domain to a range of sites on the ligase core, indicates that the accessory domain is draped over the vertex of the ligase core tripod structure. This geometry suggests how the purine bulge in the polymerase replaces the P2 helix in the Class I ligase with a new structure that may facilitate the stabilization of incoming nucleotide triphosphates.  相似文献   

7.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

8.
9.
The RNA polymerase 'bridge helix' is a metastable α-helix that spans the leading edge of the enzyme active-site cleft. A new study published in BMC Biology reveals surprising tolerance to helix-disrupting changes in a region previously thought crucial for translocation, and suggests roles for two hinge-like segments of the bridge helix in coordinating modules that move during the nucleotide-addition cycle.  相似文献   

10.
Modulation of RNA polymerase specificity by ppGpp   总被引:21,自引:0,他引:21  
Summary ppGpp alters the initiation specificity of RNA polymerase holoenzyme in vitro in a direction which mimics the stringent response in vivo. The transition temperature for opening rRNA promoters is increased by the nucleotide, that for opening 80 promoters is unaffected. This implies that RNA polymerase can discriminate between different types of promoter. ppGpp may act by effecting a structural change in the enzyme.  相似文献   

11.
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP–NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop–trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β′ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.  相似文献   

12.
13.
14.
15.
Ding H  Green TJ  Lu S  Luo M 《Journal of virology》2006,80(6):2808-2814
In the replication cycle of nonsegmented negative-strand RNA viruses, the viral RNA-dependent RNA polymerase (L) recognizes a nucleoprotein (N)-enwrapped RNA template during the RNA polymerase reaction. The viral phosphoprotein (P) is a polymerase cofactor essential for this recognition. We report here the 2.3-angstroms-resolution crystal structure of the central domain (residues 107 to 177) of P from vesicular stomatitis virus. The fold of this domain consists of a beta hairpin, an alpha helix, and another beta hairpin. The alpha helix provides the stabilizing force for forming a homodimer, while the two beta hairpins add additional stabilization by forming a four-stranded beta sheet through domain swapping between two molecules. This central dimer positions the N- and C-terminal domains of P to interact with the N and L proteins, allowing the L protein to specifically recognize the nucleocapsid-RNA template and to progress along the template while concomitantly assembling N with nascent RNA. The interdimer interactions observed in the noncrystallographic packing may offer insight into the mechanism of the RNA polymerase processive reaction along the viral nucleocapsid-RNA template.  相似文献   

16.
17.
Arnold JJ  Cameron CE 《Biochemistry》2004,43(18):5126-5137
We have solved the complete kinetic mechanism for correct nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus, 3D(pol). The phosphoryl-transfer step is flanked by two isomerization steps. The first conformational change may be related to reorientation of the triphosphate moiety of the bound nucleotide, and the second conformational change may be translocation of the enzyme into position for the next round of nucleotide incorporation. The observed rate constant for nucleotide incorporation by 3D(pol) (86 s(-1)) is dictated by the rate constants for both the first conformational change (300 s(-1)) and phosphoryl transfer (520 s(-1)). Changes in the stability of the "activated" ternary complex correlate best with changes in the observed rate constant for incorporation resulting from modification of the nucleotide. With the exception of UTP, the K(d) values for nucleotides are at least 10-fold lower than the cellular concentration of the corresponding nucleotide. Our data predict that transition mutations should occur at a frequency of 1/15000, transversion mutations should occur at a frequency of less than 1/150000, and incorporation of a 2'-deoxyribonucleotide with a correct base should occur at a frequency 1/7500. Together, these data support the conclusion that 3D(pol) is actually as faithful as an exonuclease-deficient, replicative DNA polymerase. We discuss the implications of this work on the development of RNA-dependent RNA polymerase inhibitors for use as antiviral agents.  相似文献   

18.
IT has been a source of speculation whether the reading of the genetic code of DNA by RNA polymerase involves the disruption of the DNA helix. While circuitous evidence favouring either affirmative or negative answer has been accumulating, direct experiments have been few1–11. Kosaganov et al. investigated the possibility of a local unwinding of DNA during RNA synthesis by measuring the kinetics of formaldehyde-induced denaturation of DNA during RNA synthesis12. They concluded that the binding of RNA polymerase did not cause local unwinding but RNA synthesis produced “defects” in the double helix. Unfortunately, the interpretation of formaldehyde-induced denaturation is not clear, nor is the nature of a “defect”.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号