首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of domesticated organisms into natural populations may adversely affect these populations through predation, resource competition, and the introduction of disease. Additionally, the potential for hybridization between wild and domestic conspecifics is of great concern because it can alter the evolutionary integrity of the affected populations. Wild American mink ( Neovison vison ) populations may be threatened not only by competition for resources with domestic mink originating from farms, but by breeding with such escapees. Using 10 microsatellite loci, we genotyped mink from Ontario, Canada, sampled from two farms, two putatively mixed populations in regions surrounding the mink farms, and two wild populations with no recent history of mink farming. Using individual-based Bayesian population assignment, we identified four population clusters, including one wild, and three domestic populations. The latter were not clustered by farm but rather by distinct line-bred colour phases. Population clustering also identified domestic and hybrid mink in the free-ranging populations. Nearly two-thirds of the mink sampled in the two putatively mixed populations (78% and 43%) were either farm escapees or descendants of escapees. Principal components analysis of allele frequencies supported our Bayesian assignment results. The power of our assignment test was assessed using simulated hybrid genotypes which suggested that our overall correct classification rate was 96.2%. The overwhelming presence of domestic animals and their hybridization with mink in natural populations is of great concern for the future sustainability of wild mink populations.  相似文献   

2.
Two methods were used to separate free-ranging mink Mustela vison into wild mink and escaped farm mink. Analysis of stable carbon isotopes was performed on teeth and claws of 226 free-ranging mink from two areas in Denmark. A classification based on empirical data resulted in three groups (n=213); 47% were newly escaped farm mink and another 31% had been born in farms and lived in nature for more than ca. 2 months. The remaining 21% may or may not have been born in nature, but they had been free ranging for more than a year and were thus considered wild. A genetic analysis by means of microsatellites was performed on a subsample of the trapped mink (86 individuals) and on 70 farm mink, in order to assess the proportion of escaped farm mink in the free-ranging population. Strong genetic evidence for a high percentage of escaped farm mink in the free-ranging population (86%) was found, in agreement with the carbon isotope results. Both methods can be used to distinguish between farm and wild mink, but whereas microsatellites can only say whether a given mink originated from a farm or not, carbon isotopes can give some more detail on the period of time that a farm mink has been living in natural habitats. The high proportion of escaped farm mink in the Danish nature could have serious implications for the preservation of other vulnerable species and should be carefully considered when designing conservation strategies.  相似文献   

3.

Background

Infectious diseases can often be of conservation importance for wildlife. Spillover, when infectious disease is transmitted from a reservoir population to sympatric wildlife, is a particular threat. American mink (Neovison vison) populations across Canada appear to be declining, but factors thus far explored have not fully explained this population trend. Recent research has shown, however, that domestic mink are escaping from mink farms and hybridizing with wild mink. Domestic mink may also be spreading Aleutian disease (AD), a highly pathogenic parvovirus prevalent in mink farms, to wild mink populations. AD could reduce fitness in wild mink by reducing both the productivity of adult females and survivorship of juveniles and adults.

Methods

To assess the seroprevalence and geographic distribution of AD infection in free-ranging mink in relation to the presence of mink farms, we conducted both a large-scale serological survey, across the province of Ontario, and a smaller-scale survey, at the interface between a mink farm and wild mink.

Conclusions/Significance

Antibodies to AD were detected in 29% of mink (60 of 208 mink sampled); however, seroprevalence was significantly higher in areas closer to mink farms than in areas farther from farms, at both large and small spatial scales. Our results indicate that mink farms act as sources of AD transmission to the wild. As such, it is likely that wild mink across North America may be experiencing increased exposure to AD, via disease transmission from mink farms, which may be affecting wild mink demographics across their range. In light of declining mink populations, high AD seroprevalence within some mink farms, and the large number of mink farms situated across North America, improved biosecurity measures on farms are warranted to prevent continued disease transmission at the interface between mink farms and wild mink populations.  相似文献   

4.
Aleutian mink disease virus (AMDV) causes severe disease in farmed mink (Neovison vison) worldwide. In Denmark, AMDV in farmed mink has been confined to the northern part of the mainland since 2002. From 1998 to 2009, samples from 396 free-ranging mink were collected from mainland Denmark, and a low AMDV antibody prevalence (3% of 296) was found using countercurrent immune electrophoresis. However, on the island of Bornholm in the Baltic Sea, a high prevalence (45% of 142 mink) was detected in the free-ranging mink. Aleutian mink disease virus was detected by polymerase chain reaction in 32 of 49 antibody-positive free-ranging mink on Bornholm, but not in mink collected from other parts of Denmark. Sequence analysis of 370 base pairs of the nonstructural gene of the AMDV of 17 samples revealed two clusters with closest similarity to Swedish AMDV strains.  相似文献   

5.
Control of invasions is facilitated by their early detection, but this may be difficult when invasions are cryptic due to similarity between invaders and native species. Domesticated conspecifics offer an interesting example of cryptic invasions because they have the ability to hybridize with their native counterparts, and can thus facilitate the introgression of maladaptive genes. We assessed the cryptic invasion of escaped domestic American mink (Neovison vison) within their native range. Feral mink are a known alien invader in many parts of the world, but invasion of their native range is not well understood. We genetically profiled 233 captive domestic mink from different farms in Ontario, Canada and 299 free‐ranging mink from Ontario, and used assignments tests to ascertain genetic ancestries of free‐ranging animals. We found that 18% of free‐ranging mink were either escaped domestic animals or hybrids, and a tree regression showed that these domestic genotypes were most likely to occur south of a latitude of 43.13°N, within the distribution of mink farms in Ontario. Thus, domestic mink appear not to have established populations in Ontario in locations without fur farms. We suspect that maladaptation of domestic mink and outbreeding depression of hybrid and introgressed mink have limited their spread. Mink farm density and proximity to mink farms were not important predictors of domestic genotypes but rather, certain mink farms appeared to be important sources of escaped domestic animals. Our results show that not all mink farms are equal with respect to biosecurity, and thus that the spread of domestic genotypes can be mitigated by improved biosecurity.  相似文献   

6.
Aim Invasive alien species usually exhibit very high adaptation and rapid evolution in a new environment, but they often have low levels of genetic diversity (invasive species paradox). Genetic variation and population genetic structure of feral American mink, Neovison vison, in Poland was investigated to explain the invasion paradox and to assess current gene flow. Furthermore, the influence of mink farming on adaptation of the feral population was evaluated by comparing the genetic structure of feral and ranch mink. Location Samples from feral mink were collected in 11 study areas in northern and central Poland and from ranch mink at 10 farms distributed throughout the country. Methods A 373‐bp‐long mtDNA control region fragment was amplified from 276 feral and 166 ranch mink. Results Overall, 31 haplotypes, belonging to two groups from genetically diverse sources, were detected: 11 only in feral mink, 12 only in ranch mink and eight in both. The genetic differentiation of feral mink from the trapping sites was high, while that among ranch mink from various farms was moderate. There was no significant relationship between genetic and geographic distance. The number of trapping sites where given haplotypes occurred correlated with the number of farms with these haplotypes. The mink from two sites were the most divergent, both from all other feral mink and from ranch mink. Comparison of mtDNA and microsatellite differentiation suggests male‐biased dispersal in this species. Main conclusions American mink in Poland exhibit high genetic diversity and originate from different source populations of their native range. The process of colonization was triggered by numerous escapees from various farms and by immigrants from Belarus. The genetic structure of local feral mink populations was shaped by the founder effect and multiple introductions. The genomic admixture that occurred during mixing of different populations might have increased the fitness of individuals and accelerated the invasiveness of this species.  相似文献   

7.
Farmland bird population trends were examined on a sample of lowland English farms to assess the relative importance of habitat loss and habitat degradation. Data were extracted from 11 farms surveyed by territory mapping between 1966 and 1986 as part of the British Trust for Ornithology's Common Birds Census. The population size of 38 bird species was quantified for each farm in each year. The extents of five non-crop habitats were measured at 4-yearly intervals on each farm. The farms were selected because some had undergone extensive removal of non-crop habitats while others had undergone little or none. Although declines were commonest on farms where the severest habitat loss had taken place, we found no evidence that habitat loss was the main factor causing population declines: all 11 farms had significant numbers of declining species, even where habitat loss was minimal. Furthermore, general linear modelling found no significant effects of habitat loss on population trends and principal-components analysis found limited effects of habitat extent on community composition. These results suggest that habitat loss is of secondary importance in causing farmland bird population declines. We suggest that other processes, such as habitat degradation, may have caused a baseline population decline in at least 10 farmland bird species and that declines may have been exacerbated by localised habitat loss. Received: 4 February 1998 / Accepted: 1 April 1998  相似文献   

8.
Inbreeding is an increasing problem in farmed mink, because of limited exchange of individuals between farms. In this study, genetic relatedness within seven American mink (Neovison vison) colour strains originating from 13 different mink farms in Denmark was analysed using 21 polymorphic microsatellite loci. We detected large differences in the level of relatedness (range 0.017-0.520) within colour strains. Moreover, a very strong and highly significant negative correlation between the level of relatedness and fecundity was observed (r = 0.536, P < 0.001) [Correction added after online publication on 9 March 2011: r(2) has been changed to r]. To our knowledge, this is the first time that such a correlation has been demonstrated for commercially farmed mink.  相似文献   

9.
The diversity of 11 microsatellite loci was examined to estimate the genetic variability of ranch and feral American minkNeovison vison (Schreber, 1777) in Poland. Samples were collected from 10 mink farms (182 individuals) and from 5 areas in the north-eastern part of the country (87 individuals). At each examined locus the observed heterozygosity (H o) was lower than the expected heterozygosity (H e). Feral mink showed lower genetic variability than ranch mink; however, in the former group the mean value of the inbreeding coefficient (F IS=0.306) was higher than in the latter (0.242). These results demonstrated that feral and ranch mink belong to two genetically close but separate groups. Genetic differences were identified between mink colour breeds but not between animals from particular farms. The height of the modal values of ΔK indicated the presence of four genetic clusters: (1) farmed mink sapphire, (2) farmed mink standard and pastel, (3) farmed mink pearl and (4) feral mink. Assignment of mink individuals using assignment test, STRUCTURE and GeneClass 2.0. revealed that 12–16% of the feral mink group are likely to be ranch mink escapees. It may be concluded that approximately 30 years after the start of the expansion of feral mink in north-eastern Poland, this wild-living population exists without a major input of individuals bred on fur farms.  相似文献   

10.
Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues.  相似文献   

11.
Biological invasions constitute major threats to global biodiversity. Eco‐evolutionary considerations highlight the importance of contemporary evolution in community responses to bioinvasions. However, effects of metapopulation structure on invasion success have been mostly overlooked even though metapopulation structure determines gene flow and is likely to affect evolutionary processes. Here, we investigate a stepping‐stone model with evolving alien native interaction strengths. We demonstrate analytically that the site of invasion can determine the success of an invading consumer because gene flow and demography of a local resource species interact to obstruct local resource adaptation. Our main results are 1) that invasion success is more likely in genetic sink populations of the native species and 2) that invasion is more likely to occur against the migrational flow of native species. These findings suggest that invasibility is best regarded as an emergent property not only of communities but of entire metapopulations. Since migration networks of aliens and natives are often mismatched due to anthropogenic interference, our results indicate how population structure eases the spread of invasives against the migrational flow of natives.  相似文献   

12.
Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single‐species population model along a one‐dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco‐evolutionary dynamics and speed of invasion. From a focal introduction site, the generic pattern predicted by our model features a temporal transition from wave‐like to pulsed invasion. Each regime is driven primarily by local adaptation, while the transition is caused by eco‐evolutionary feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key factors of the duration and speed of each phase. Our results demonstrate that spatial eco‐evolutionary feedbacks along environmental gradients can drive strong temporal variation in the rate and structure of population spread, and must be considered to better understand and forecast invasion rates and range dynamics.  相似文献   

13.
The occurrence of C. jejuni in the intestinal contents of mink and in the mink feed, prepared from fresh, untreated slaughter offal, was studied. The farms and the central feeding kichens, from where the intestinal and feed samples were collected, were situated in the northwestern part of Finland. All mink samples, originating from 9 farms, and feed samples, originating from 2 central feeding kichens were negative for C. jejuni and for C. coll The only positive faecal samples were obtained from a farm, being located in the southern part of Finland. Experimental colonization of C jejuni was followed in 10 pregnant mink during their last trimester of pregnancy. The animals colonized only transiently with C. jejuni. Five of the animals shedded Campylobacters only for 1–2 weeks after inoculation. Two experimental animals aborted. These animals were colonized at the time of abortion with C jejuni. The association of C jejuni infection to abortion was not, however, confirmed. The uterine contents or the fetuses examined were negative for Campylobacters.  相似文献   

14.
Stomach and intestine contents of 211 American minkMustela vison Schreber, 1777 from two areas (Thy and Bornholm) in Denmark and stomach contents of 47 polecatsM. putorius Linnaeus, 1758 from Thy were analysed. Sympatric mink (from Thy) preyed mostly on mammals (55% occurrence), followed by amphibians (36%), birds (33%) and fish (30%), whereas polecat preyed mostly on amphibians (87%) and mammals (34%), and only occasionally on birds (9%) and fish (6%). Allopatric mink (from Bornholm) preyed mostly on birds (50%), followed by mammals (42%), fish (25%) and amphibians (4%). With the possible exception of some amphibians, no endangered species were found in their diet. No differences were found in food composition between wild and escaped farm mink. The concern that mink in general might have a detrimental effect on its prey species and other mustelids in terms of food competition in Denmark may be unjustified. It cannot be ruled out, however, that mink may locally have a seriously negative effect on some specific prey species, and clearly, more data is needed on eg prey abundance and spring and summer mink diet, to make stronger conclusions.  相似文献   

15.
SARS-CoV-2 infection outbreaks in minks have serious implications associated with animal health and welfare, and public health. In two naturally infected mink farms (A and B) located in Greece, we investigated the outbreaks and assessed parameters associated with virus transmission, immunity, pathology, and environmental contamination. Symptoms ranged from anorexia and mild depression to respiratory signs of varying intensity. Although the farms were at different breeding stages, mortality was similarly high (8.4% and 10.0%). The viral strains belonged to lineages B.1.1.218 and B.1.1.305, possessing the mink-specific S-Y453F substitution. Lung histopathology identified necrosis of smooth muscle and connective tissue elements of vascular walls, and vasculitis as the main early key events of the acute SARS-CoV-2-induced broncho-interstitial pneumonia. Molecular investigation in two dead minks indicated a consistently higher (0.3–1.3 log10 RNA copies/g) viral load in organs of the male mink compared to the female. In farm A, the infected farmers were responsible for the significant initial infection of 229 out of 1,000 handled minks, suggesting a very efficient human-to-mink transmission. Subsequent infections across the sheds wherein animals were being housed occurred due to airborne transmission. Based on a R0 of 2.90 and a growth rate equal to 0.293, the generation time was estimated to be 3.6 days, indicative of the massive SARS-CoV-2 dispersal among minks. After the end of the outbreaks, a similar percentage of animals were immune in the two farms (93.0% and 93.3%), preventing further virus transmission whereas, viral RNA was detected in samples collected from shed surfaces and air. Consequently, strict biosecurity is imperative during the occurrence of clinical signs. Environmental viral load monitoring, in conjunction with NGS should be adopted in mink farm surveillance. The minimum proportion of minks that need to be immunized to avoid outbreaks in farms was calculated at 65.5%, which is important for future vaccination campaigns.  相似文献   

16.
With the dramatic pace of modernization of the world's population, human adaptation as a theoretical construct and paradigm will likely become a focal scientific issue involving scientists from many disciplinary areas during the 21st Century. Macro and micro environments are in rapid flux and human populations are exposed to rapid change. The concept of adaptation, at least in the field of biological anthropology and human biology, will likely remain tied to evolutionary processes and concepts of selection and fitness. In this paper, we discuss the theoretical constructs of adaptation and adaptability and select three current examples from our ongoing research that involve studies of adaptation and evolutionary processes in modernizing populations in different locations worldwide.  相似文献   

17.
Bovine tuberculosis (bTB) is endemic in free-ranging white-tailed deer (Odocoileus virginianus) in MI, USA. Currently, the rates of farm visitation by deer and co-use of forage resources by cattle and deer are poorly understood. To evaluate the extent deer and livestock may share forage resources, we investigated farm, yard, and cattle-use area visitation by white-tailed deer and compared visitation with common livestock management practices. We fitted 25 female white-tailed deer near the bTB-infected zone in Michigan’s Lower Peninsula with global positioning system collars. Livestock management practices associated with farm visitation included presence of confined feeding pastures, number of cattle water sources, and the number of cattle pastures. Fewer farm visits occurred at night than during the day. A higher proportion of nighttime visits occurred between midnight and sunrise. Visitation to yards and cattle-use areas were similar: a higher proportion of visits occurred at night, and a higher proportion of nighttime visits occurred between midnight and sunrise. Multiple visits during the same day were common. Visitation increased through spring and peaked during the fawning season. Results suggest that mitigation and control efforts to guard against potential transmission of bTB should include the season and time of day during which deer visitation occurs. Furthermore, specific livestock management practices may contribute to farm visitation by deer. Deer visiting multiple farms may contribute to local area spread of bTB. Focusing risk mitigation efforts on individual deer that are most likely to visit farms may reduce potential bTB transmission.  相似文献   

18.
Metapopulation processes and persistence in remnant water vole populations   总被引:4,自引:0,他引:4  
We examined the spatial distribution of water vole populations in four consecutive years and investigated whether the regional population processes of extinction, recolonisation and migration influence distribution and persistence. We examined how such regional processes are influenced by spatial variation in habitat quality. In addition, we assessed the relevance of metapopulation concepts for understanding the dynamics of species that deviate from classical metapopulation assumptions and developing conservation measures for them. Populations were patchy and discrete, and the patchy distribution was not static between years. Population turnover occurred even in the absence of predatory mink, which only influenced the network of populations at the end of the study. Most populations were clustered close together in the upper tributaries. Local population persistence was predominantly influenced by population size: large populations were more persistent. Recolonisation rates were influenced by isolation and habitat quality. The isolation estimates which best explained the distribution of water vole populations incorporated straight‐line distances, suggesting water voles disperse overland. The distribution of recolonised sites indicated that dispersing voles actively selected habitat on the basis of its quality. Water voles depart from some of the assumptions made by frequently used metapopulation models. In particular there is no clear binary distinction between suitable and non‐suitable habitat. Accounting for variation in habitat quality before investigating temporal changes in population distribution allowed us to demonstrate that the key metapopulation processes were important. The significance of regional population processes relative to local population processes may have increased in declining, fragmented populations compared to pristine regional populations. We hypothesise that although mink predation is likely to eventually cause regional extinction in many areas, metapopulation processes have delayed this decline. Consequently, conservation measures should take into account mink predation rates and regional population processes, before considering aspects of habitat quality.  相似文献   

19.
Creating farms for sable breeding was associated with the commercial destruction of natural populations and, consequently, the overall decline in the species number. The gene pool of the first farm-bred sable population in Russia, established in the vicinity of Moscow (“Pushkinskiy” fur farm), was formed by crossing of animals removed from nine natural populations. In the first eight years of farm operation, approximately one thousand animals were used for sable breeding; some of these animals were able to adapt to the farm management and, subsequently, to the selection for a number of quantitative traits in the period of industrial domestication. It took about ten years for breeders to work out the breeding and selection technologies, which became successfully employed in the established affiliated sable breeding farms. The main achievement in sable breeding over the 85-year historical period of breeding in Russia is the creation of two unique breeds, black sable (1969) and Saltykovskaya 1 (2007). In general, industrial domestication in fur farming and the subsequent breeding works made the fur of many species (mink, fox, Arctic fox) obtained from natural populations uncompetitive, which undoubtedly reduced the hunting interest in the animals living in the wild. Consequently, hunting for fur-bearing animals of most species decreased and has only local importance. Owing to the specific features of sable biology, the fur of farm-bred animals cannot yet completely replace the furs obtained by hunting; however, the farm-bred sable population is constantly growing. This review presents the results of the analysis of the level of genetic variability in natural and farm populations at nuclear and mitochondrial loci. The comparative analysis makes it possible to estimate the loss of genetic diversity upon the species adaptation to the new conditions of existence.  相似文献   

20.
Can simple enrichments enhance caged mink welfare? Pilot data from 756 sub-adults spanning three colour-types (strains) identified potentially practical enrichments, and suggested beneficial effects on temperament and fur-chewing. Our main experiment started with 2032 Black mink on three farms: from each of 508 families, one juvenile male-female pair was enriched (E) with two balls and a hanging plastic chain or length of hose, while a second pair was left as a non-enriched (NE) control. At 8 months, more than half the subjects were killed for pelts, and 302 new females were recruited (half enriched: ‘late E’). Several signs of improved welfare or productivity emerged. Access to enrichment increased play in juveniles. E mink were calmer (less aggressive in temperament tests; quieter when handled; less fearful, if male), and less likely to fur-chew, although other stereotypic behaviours were not reduced. On one farm, E females had lower cortisol (inferred from faecal metabolites). E males tended to copulate for longer. E females also weaned more offspring: about 10% more juveniles per E female, primarily caused by reduced rates of barrenness (‘late E’ females also giving birth to bigger litters on one farm), effects that our data cautiously suggest were partly mediated by reduced inactivity and changes in temperament. Pelt quality seemed unaffected, but E animals had cleaner cages. In a subsidiary side-study using 368 mink of a second colour-type (‘Demis’), similar temperament effects emerged, and while E did not reduce fur-chewing or improve reproductive success in this colour-type, E animals were judged to have better pelts. Overall, simple enrichments were thus beneficial. These findings should encourage welfare improvements on fur farms (which house 60-70 million mink p.a.) and in breeding centres where endangered mustelids (e.g. black-footed ferrets) often reproduce poorly. They should also stimulate future research into more effective practical enrichments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号