首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impressive affinity of Adriamycin and related anthracycline antibiotics for negatively-charged phospholipids has been implicated in the mechanism of the cardiac toxicity of these drugs. In this report we employ the method of fluorescence anisotropy titration to examine the manner in which 14-valerate side chain substitution modulates anthracycline drug associations with electroneutral vesicles composed of dimyristoyl phosphatidylcholine as well as negatively-charged vesicles composed of dimyristoyl phosphatidylglycerol or a binary mixture of dimyristoyl phosphatidylcholine and cardiolipin. Equilibrium binding data gathered on several anthracycline analogs indicate that incorporation of a hydrophobic valerate side chain abolished the high levels of preferential drug binding to negatively-charged membranes. Thus, we propose that 14-O-acyl substitution may prove to be a useful synthetic modification to prevent the selective accumulation of positively-charged anthracyclines in tissues or membrane domains rich in negatively-charged lipid.  相似文献   

2.
T G Burke  T R Tritton 《Biochemistry》1985,24(21):5972-5980
We have exploited the intrinsic fluorescence properties of the anthracycline antitumor antibiotics to study the dependence on drug structure of relative drug location and dynamics when the anthracyclines were bound to sonicated dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) vesicles at 27.5 degrees C. Iodide quenching experiments at constant ionic strength were used to evaluate the relative accessibilities of the bound fluorophores to membrane-impermeable iodide. Iodide was found to quench the fluorescence of anthracyclines in free solution by both static and dynamic mechanisms, whereas quenching of membrane-bound fluorophores was predominantly due to the dynamic mechanism. Modified Stern-Volmer plots of anthracyclines bound to fluid-phase DMPC bilayers were linear, and the biomolecular rate constant (kq) values ranged from 0.6 X 10(9) to 1.3 X 10(9) M-1 s-1. Modified Stern-Volmer plots of anthracyclines bound to solid-phase DPPC bilayers were curved, indicative of a heterogeneous-bound drug population. A strong correlation between drug hydrophobicity and penetration of the fluorophore into the bilayer was observed for the daunosamine-containing anthracyclines. Steady-state fluorescence anisotropy measurements under iodide quenching conditions were used to investigate the diffusive motions of anthracyclines in isotropic solvent and in fluid-phase DMPC bilayers. Anthracycline derivatives free in solution exhibited limiting anisotropy (alpha infinity) values which decayed to zero at times long compared to the excited-state lifetime, in contrast to anthracyclines bound to fluid-phase DMPC bilayers, which showed nonzero alpha infinity values. Steady-state anisotropies of membrane-bound anthracyclines were found to be governed principally by alpha infinity and not by the mean rotational rate (R).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The binding of melittin and the C-terminally truncated analogue of melittin (21Q) to a range of phospholipid bilayers was studied using surface plasmon resonance (SPR). The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylethanolamine (DMPE), together with mixtures DMPC/dimyristylphosphatidylglycerol (DMPG), DMPC/DMPG/cholesterol and DMPE/DMPG. Melittin bound rapidly to all membrane mixtures, whereas 21Q, which has a reduced charge, bound much more slowly on the DMPC and DMPC/DMPG mixtures reflecting the role of the initial electrostatic interaction. The loss of the cationic residues also significantly decreased the binding of 21Q with DMPC/DMPG/Cholesterol, DMPE and DMPE/DMPG. The role of electrostatics was also highlighted with NaCl in the buffer, which affected the way melittin bound to the different membranes, causing a more uniform, concentration dependant increase in response. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high α-helicity was associated with high binding affinity. Overall, the results demonstrate that the positively charged residues at the C-terminus of melittin play an essential role in membrane binding, that modulation of peptide charge influences selectivity of binding to different phospholipids and that manipulation of the cationic regions of antimicrobial peptides can be used to modulate membrane selectivity.  相似文献   

4.
The present work demonstrates the interaction of promising cancer cell photosensitizer, harmane (HM), with liposome membranes of varying surface charges, dimyristoyl-l-α-phosphatidylcholine (DMPC) and dimyristoyl-l-α-phosphatidylglycerol (DMPG). Electrostatic interaction of the cationic probe (HM) with the surface charges of the lipids is responsible for differential modulation of the spectral properties of the drug in different lipid environments. Estimation of partition coefficient (K(p) (±10%) = 5.58 × 10(4) in DMPC and 3.28 × 10(5) in DMPG) of HM between aqueous buffer and lipid phases reflect strong binding interaction of the drug with both the lipids. Evidence for greater degree of partitioning of HM into DMPG membrane compared to DMPC membrane has been deduced and further substantiated from experimental studies such as steady-state fluorescence anisotropy, micropolarity determination. The molecular modeling investigation by docking simulation coupled with fluorescence quenching experiment has been exploited to substantiate the location of drug at the lipid head-group region. Modulation of the dynamical properties of the drug within the lipid environments has also been addressed. Rotational relaxation dynamics studies unravel the impartation of a significant degree of motional restriction on the probe molecule within the lipids and reinforce the differential interactions of HM with the two lipid systems along the lines of other findings. Fluorescence kinetics studies reveal a faster association (in terms of apparent rate constants describing the process of interaction) of the drug with DMPG membrane compared to DMPC. This result is argued in connection with the electrostatic interaction between the drug and the liposome surface charges.  相似文献   

5.
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.  相似文献   

6.
The effect of acyl chain structure and bilayer phase state on binding and penetration by the peptide HPA3 was studied using dual polarisation interferometry. This peptide is an analogue of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1) which has been shown to have antimicrobial and cell-penetrating properties. The binding of HPA3 to zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitolyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and negatively charged membranes composed of DMPC and 1,2-dimyristoyl-sn-glycero-3-(phosphor-rac-(1-glycerol)) (DMPG) or POPC and 1-palmitolyl-2-oleyl-sn-glycero-3-(phosphor-rac-(1-glycerol)) (POPG) was determined using dual polarisation interferometry (DPI). Mass and birefringence were measured in real time, enabling the creation of birefringence–mass plots for detailed analysis of the changes in lipid bilayer order during the peptide-binding process. HPA3 bound to all four lipids and the binding progressed as a single phase for the saturated gel phase bilayers DMPC and DMPC–DMPG. However, the binding process involved two or more phases, with penetration of the unsaturated fluid phase POPC and POPC–POPG bilayers. Structural changes in the saturated bilayer were partially reversible whereas binding to the unsaturated bilayer resulted in irreversible changes in membrane structure. These results demonstrate that more disordered unsaturated bilayers are more susceptible to further disorganisation and have a lower capacity to recover from peptide-induced structural changes than saturated ordered bilayers. In addition, this study further establishes DPI as powerful tool for analysis of multiphase peptide-insertion processes associated with complex structural changes in the liquid-crystalline membrane.  相似文献   

7.
The interactions of the antimicrobial peptide maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) with model phospholipid membranes were studied by use of dual polarisation interferometry and neutron reflectometry and dimyristoylphosphatidylcholine (DMPC) and mixed DMPC–dimyristoylphosphatidylglycerol (DMPG)-supported lipid bilayers chosen to mimic eukaryotic and prokaryotic membranes, respectively. In DMPC bilayers concentration-dependent binding and increasing perturbation of bilayer order by maculatin were observed. By contrast, in mixed DMPC–DMPG bilayers, maculatin interacted more strongly and in a concentration-dependent manner with retention of bilayer lipid order and structure, consistent with pore formation. These results emphasise the importance of membrane charge in mediating antimicrobial peptide activity and emphasise the importance of using complementary methods of analysis in probing the mode of action of antimicrobial peptides.  相似文献   

8.
Previous computer analyses suggested two possible lipid binding sites, residues 49-71 and 131-155, of the primary amino acid sequence on ABP-280 (filamin), which could facilitate membrane attachment/insertion. We expressed these regions as fusion proteins with schistosomal GST and investigated their interaction with mixtures of zwitterionic (dimyristoyl-l-alpha-phosphatidylcholine, DMPC) and anionic (dimyristoyl-l-alpha-phosphatidylglycerol, DMPG) phospholipids in reconstituted lipid bilayers by differential scanning calorimetry (DSC). Using vesicles of mixed DMPC/DMPG with increasing fusion protein concentrations, we established in calorimetric assays a decrease of the main chain transition enthalpy, DeltaH, and a shift in chain melting temperature. This is indicative of the insertion of these fragments into the hydrophobic region of lipid membranes. We confirmed these findings by the film balance technique using lipid monolayers (DMPG). The binding judged from both methods was of moderate affinity.  相似文献   

9.
We have previously shown that leucine to lysine substitution(s) in neutral synthetic crown ether containing 14-mer peptide affect the peptide structure and its ability to permeabilize bilayers. Depending on the substitution position, the peptides adopt mainly either a α-helical structure able to permeabilize dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) vesicles (nonselective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). In this study, we have used a combination of solid-state NMR and Fourier transform infrared spectroscopy to investigate the effects of nonselective α-helical and selective intermolecular β-sheet peptides on both types of bilayers. 31P NMR results indicate that both types of peptides interact with the headgroups of DMPC and DMPG bilayers. 2H NMR and Fourier transform infrared results reveal an ordering of the hydrophobic core of bilayers when leakage is noted, i.e., for DMPG vesicles in the presence of both types of peptides and DMPC vesicles in the presence of nonselective peptides. However, selective peptides have no significant effect on the ordering of DMPC acyl chains. The ability of these 14-mer peptides to permeabilize lipid vesicles therefore appears to be related to their ability to increase the order of the bilayer hydrophobic core.  相似文献   

10.
Bacteriophage M13 major coat protein has been incorporated at different lipid/protein ratios in lipid bilayers consisting of various ratios of dimyristoylphosphatidylcholine (DMPC) to dimyristoylphosphatidylglycerol (DMPG). Spin-label ESR experiments were performed with phospholipids labeled at the C-14 position of the sn-2 chain. For M13 coat protein recombinants with DMPC alone, the relative association constants were determined for the phosphatidylcholine, phosphatidylglycerol, and phosphatidic acid spin-labels and found to be 1.0, 1.0, and 2.1 relative to the background DMPC, respectively. The number of association sites for each phospholipid on the protein was found to be 4 per protein monomer. The intrinsic off-rates for lipid exchange at the intramembranous surface of the protein in DMPC alone at 30 degrees C were found to be 5 X 10(6), 6 X 10(6), and 2 X 10(6) s-1 for the phosphatidylcholine, phosphatidylglycerol, and phosphatidic acid spin-labels, respectively. Adding DMPG to the DMPC lipid system increased the exchange rates of the lipids on and off the protein. By gel filtration chromatography, it is found that protein aggregation is reduced after addition of DMPG to the lipid system. This is in agreement with measurements of tryptophan fluorescence, which show a decrease in quenching efficiency after introduction of DMPG in the lipid system. The results are interpreted in terms of a model relating the ESR data to the size of the protein-lipid aggregates.  相似文献   

11.
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC).Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.  相似文献   

12.
Anionic lipids are key components in the cell membranes. Many cell-regulatory and signaling mechanisms depend upon a complicated interplay between them and membrane-bound proteins. Phospholipid bilayers are commonly used as model systems in experimental or theoretical studies to gain insight into the structure and dynamics of biological membranes. We report here 200-ns-long MD simulations of pure (DMPC and DMPG) and mixed equimolar (DMPC/DMPG, DMPC/DMPS, and DMPC/DMPA) bilayers that each contain 256 lipids. The intra- and intermolecular interaction patterns in pure and mixed bilayers are analyzed and compared. The effect of monovalent ions (Na+) on the formation of salt-bridges is investigated. In particular, the number of Na+-mediated clusters in the presence of DMPS is higher than with DMPG and DMPA. We observe a preferential clustering of DMPS (and to some extent DMPA) lipids together rather than with DMPC molecules, which can explain the phase separation observed experimentally for DMPC/DMPS and DMPC/DMPA bilayers.  相似文献   

13.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1991,30(24):5866-5873
The integral proteolipid apoprotein (PLP) from bovine spinal cord has been reconstituted in dimyristoylphosphatidylglycerol (DMPG) bilayers, and the mutual interactions on binding the peripheral myelin basic protein (MBP) have been studied. Quantitation of protein and lipid contents in the MBP-PLP-DMPG double recombinants at different PLP:DMPG ratios led to the conclusion that MBP binds only to the DMPG lipid headgroups and is hindered from interaction with the first shell of lipids surrounding the PLP. No specific PLP-MBP association could be detected. Electron spin resonance (ESR) spectra of phosphatidylglycerol spin-labeled at position n = 5 in the sn-2 chain showed that complexation of MBP with the PLP-DMPG recombinants leads to a decrease in lipid chain mobility to an extent which correlates with the degree of MBP binding. At low DMPG:PLP ratios, the perturbations of lipid mobility by both proteins are mutually enhanced. In single recombinants of PLP with DMPG, the ESR spectra of phosphatidylglycerol spin-labeled at position n = 14 in the sn-2 chain indicated that approximately 10 lipids/protein are motionally restricted by direct contact with the intramembranous surface of the protein. This number is in agreement with earlier results for reconstitutions of PLP in dimyristoylphosphatidylcholine (DMPC) [Brophy, P. J., Horváth, L. I., & Marsh, D. (1984) Biochemistry 23, 860-865] and is consistent with a hexameric arrangement of the PLP molecules in DMPG bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9699-9707
The selectivity of interaction between bovine spinal cord myelin basic protein (MBP) and eight different spin-labeled lipid species in complexes with dimyristoylphosphatidylglycerol (DMPG) and between spin-labeled phosphatidylglycerol and spin-labeled phosphatidylcholine in complexes of MBP with various mixtures of DMPG and dimyristoylphosphatidylcholine (DMPC) has been studied by electron spin resonance (ESR) spectroscopy. In DMPC/DMPG mixtures, the protein binding gradually decreased with increasing mole fraction of DMPC in a nonlinear fashion. The lipid-protein binding assays indicated a preferential binding of the protein to phosphatidylglycerol relative to phosphatidylcholine without complete phase separation of the two lipids. The outer hyperfine splittings (2Amax) of both phosphatidylglycerol and phosphatidylcholine labeled at C-5 of the sn-2 chain (5-PGSL and 5-PCSL, respectively) were monitored in the lipid-protein complexes as a function of the mole fraction of DMPC. The increases in the value of Amax induced on binding of the protein were larger for 5-PGSL than for 5-PCSL, up to 0.25 mole fraction of DMPC. Beyond this mole fraction the spectral perturbations induced by the protein were similar for both lipid labels. The ESR spectra of phosphatidylglycerol and phosphatidylcholine labeled at C-12 of the sn-2 chain were two component in nature, indicating indicating a direct interaction of the protein with the lipid chains, at mole fractions of DMPC up to 0.25. Quantitation of the motionally restricted spin-label population by spectral subtraction again indicated a preferential interaction of the protein with phosphatidylglycerol relative to phosphatidylcholine. Up to DMPC mode fractions of 0.25, the microenvironment of the protein was enriched in DMPG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The subnanosecond fluorescence and motional dynamics of the tryptophan residue in the bacteriophage M13 coat protein incorporated within pure dioleoylphosphatidylcholine (DOPC) as well as dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) and dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bilayers (80/20 w/w) with various L/P ratio have been investigated. The fluorescence decay is decomposed into four components with lifetimes of about 0.5, 2.0, 4.5 and 10.0 ns, respectively. In pure DOPC and DOPC/DOPG lipid bilayers, above the phase transition temperature, the rotational diffusion of the protein molecules contributes to the depolarization and the anisotropy of tryptophan is fitted to a dual exponential function. The longer correlation time, describing the rotational diffusion of the whole protein, shortens with increasing temperature and decreasing protein aggregation number. In DMPC/DMPG lipid bilayers, below the phase transition, the rotational diffusion of the protein is slowed down such that the subnanosecond anisotropy decay of tryptophan in this system reflects only the segmental motion of the tryptophan residue. Because of a heterogeneous microenvironment, the anisotropy decay must be described by three exponentials with a constant term, containing a negative coefficient and a negative decay time constant. From such a decay, the tryptophan residue within the aggregate undergoes a more restricted motion than the one exposed to the lipids. At 20 degrees C, the order parameter of the transition moment of the isolated tryptophan is about 0.9 and that for the exposed one is about 0.5.  相似文献   

16.
The location of isoniazid and rifampicin, two tuberculostatics commonly used for the treatment of Mycobacterium tuberculosis and Mycobacterium avium complex infectious diseases, in bilayers of dimyristoyl-L-alpha-phosphatidylcholine (DMPC) and dimyristoyl-L-a-phosphatidylglycerol (DMPG) have been studied by 1H NMR and fluorimetric methods. Steady-state fluorescence intensity and fluorescence energy transfer studies between rifampicin and a set of functionalized probes [n-(9-anthroyloxy)stearic acids, n=2, 12] reveal that, in both systems, isoniazid is located at the membrane surface whereas rifampicin is deeply buried inside the lipid bilayers. Steady-state fluorescence anisotropy studies performed with the probes 1,6-diphenyl-1,3,5-hexatriene (DPH) and trimethylammonium-diphenylhexa-triene (TMA-DPH), not only corroborate the above results, but also show that no changes in membrane fluidity were detected in either liposome. The 1H NMR results, in DMPC liposomes, confirm the location of rifampicin near the methylene group of the acyl chains of the lipid bilayers.  相似文献   

17.
The partition coefficients (K(p)) between lipid bilayers of dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) unilamellar liposomes and water were determined using derivative spectrophotometry for chlordiazepoxide (benzodiazepine), isoniazid and rifampicin (tuberculostatic drugs) and dibucaine (local anaesthetic). A comparison of the K(p) values in water/DMPG with those in water/DMPC (dimyristoyl-L-alpha-phosphatidylcholine) revealed that for chlordiazepoxide and isoniazid, neutral drugs at physiological pH, the partition coefficients are similar in anionic (DMPG) and zwitterionic (DMPC) liposomes. However, for ionised drugs at physiological pH, the electrostatic interactions are different with DMPG and DMPC, with the cationic dibucaine having a stronger interaction with DMPG, and the anionic rifampicin having a much larger K(p) in zwitterionic DMPC. These results show that liposomes are a better model membrane than an isotropic two-phase solvent system, such as water-octanol, to predict drug-membrane partition coefficients, as they mimic better the hydrophobic part and the outer polar charged surface of the phospholipids of natural membranes.  相似文献   

18.
The effects of pH titration on the EPR spectra of imidazolidine nitroxides located at the surface of mixed bilayers composed of dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidylcholine (DMPC), and at the surface of the protein, human serum albumin (HSA), have been investigated. It is found that the shift in pKa of the amino group of the imidazolidine radical from its value of 4.6 in water depends both on the interfacial polarity (delta pKapol) and on the electrostatic surface potential (delta pKael) when it is positioned at the bilayer/water interface by an anchoring hydrocarbon tail. The polarity shift is determined to be: delta pKapol = -1.3 units at the surface of DMPC bilayers at 17 degrees C, corresponding to an effective interfacial dielectric constant of epsilon approximately 37, and depends on the temperature with a coefficient of d delta pKapol/dT approximately -0.01 per degree. The electrostatic shift at the surface of DMPG bilayers is delta pKael = +1.6 units in 0.1 M KCl, which corresponds to an electrostatic surface potential of -95 mV. This electrostatic shift depends strongly both on ionic strength and on the fraction of charged lipid in the DMPC/DMPG mixtures, in a manner that agrees with the predictions of electrostatic double-layer theory. It is found that the shift in pKa of an imidazolidine radical covalently bound at the surface of HSA is determined mainly by the surface electrostatics (delta pKapol approximately 0) and corresponds to an electrostatic potential of +33 mV in 0.01 M KCl at a pH below the isoelectric point of the protein.  相似文献   

19.
Effective antimicrobial peptides (AMPs) distinguish between the host and microbial cells, show selective antimicrobial activity and exhibit a fast killing mechanism. Although understanding the structure-function characteristics of AMPs is important, the impact of the peptides on the architecture of membranes with different lipid compositions is also critical in understanding the molecular mechanism and specificity of membrane destabilisation. In this study, the destabilisation of supported lipid bilayers (SLBs) by the AMP aurein 1.2 was quantitatively analysed by dual polarisation interferometry. The lipid bilayers were formed on a planar silicon oxynitride chip, and composed of mixed synthetic lipids, or Escherichiacoli lipid extract. The molecular events leading sequentially from peptide adsorption to membrane lysis were examined in real time by changes in bilayer birefringence (lipid molecular ordering) as a function of membrane-bound peptide mass. Aurein 1.2 bound weakly without any change in membrane ordering at low peptide concentration (5 μM), indicating a surface-associated state without significant perturbation in membrane structure. At 10 μM peptide, marked reversible changes in molecular ordering were observed for all membranes except DMPE/DMPG. However, at 20 μM aurein 1.2, removal of lipid molecules, as determined by mass loss with a concomitant decrease in birefringence during the association phase, was observed for DMPC and DMPC/DMPG SLBs, which indicates membrane lysis by aurein. The membrane destabilisation induced by aurein 1.2 showed cooperativity at a particular peptide/lipid ratio with a critical mass/molecular ordering value. Furthermore, the extent of membrane lysis for DMPC/DMPG was nearly double that for DMPC. However, no lysis was observed for DMPC/DMPG/cholesterol, DMPE/DMPG and E. coli SLBs. The extent of birefringence changes with peptide mass suggested that aurein 1.2 binds to the membrane without inserting through the bilayer and membrane lysis occurs through detergent-like micellisation above a critical P/L ratio. Real-time quantitative analysis of the structural properties of membrane organisation has allowed the membrane destabilisation process to be resolved into multiple steps and provides comprehensive information to determine the molecular mechanism of aurein 1.2 action.  相似文献   

20.
We have studied the effects of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylethanolamine (DMPE) and dimyristoyl phosphatidylglycerol (DMPG) by high-sensitivity differential scanning calorimetry. We find that the effect of GS on the lamellar gel to liquid-crystalline phase transition of these phospholipids varies markedly with the structure and charge of their polar headgroups. Specifically, the presence of even large quantities of GS has essentially no effect on the main phase transition of zwitterionic DMPE vesicles, even after repeating cycling through the phase transition, unless these vesicles are exposed to high temperatures, after which a small reduction in the temperature, enthalpy and cooperativity of the gel to liquid-crystalline phase transitions is observed. Similarly, even large amounts of GS produce similar modest decreases in the temperature, enthalpy and cooperativity of the main phase transition of DMPC vesicles, although the pretransition is abolished at low peptide concentrations. However, exposure to high temperatures is not required for these effects of GS on DMPC bilayers to be manifested. In contrast, GS has a much greater effect on the thermotropic phase behavior of anionic DMPG vesicles, substantially reducing the temperature, enthalpy and cooperativity of the main phase transition at higher peptide concentrations, and abolishing the pretransition at lower peptide concentrations as compared to DMPC. Moreover, the relatively larger effects of GS on the thermotropic phase behavior of DMPG vesicles are also manifest without cycling through the phase transition or exposure to high temperatures. Furthermore, the addition of GS to DMPG vesicles protects the phospholipid molecules from the chemical hydrolysis induced by their repeated exposure to high temperatures. These results indicate that GS interacts more strongly with anionic than with zwitterionic phospholipid bilayers, probably because of the more favorable net attractive electrostatic interactions between the positively charged peptide and the negatively charged polar headgroup in such systems. Moreover, at comparable reduced temperatures, GS appears to interact more strongly with zwitterionic DMPC than with zwitterionic DMPE bilayers, probably because of the more fluid character of the former system. In addition, the general effects of GS on the thermotropic phase behavior of zwitterionic and anionic phospholipids suggest that it is located at the polar/apolar interface of liquid-crystalline bilayers, where it interacts primarily with the polar headgroup and glycerol-backbone regions of the phospholipid molecules and only secondarily with the lipid hydrocarbon chains. Finally, the considerable lipid specificity of GS interactions with phospholipid bilayers may prove useful in the design of peptide analogs with stronger interactions with microbial as opposed to eucaryotic membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号