首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation.  相似文献   

7.
8.
9.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

10.
11.
12.
13.
14.
Histone dynamics in living cells revealed by photobleaching   总被引:5,自引:0,他引:5  
Kimura H 《DNA Repair》2005,4(8):939-950
  相似文献   

15.
16.
17.
18.
A comparative analysis of chromatin from erythrocytes of frog, trout and hen has been performed in correlation with properties of the nucleosomal linker histones of H1 family. In the nucleosomes from frog erythrocytes the linker histone is represented by H1(0)-like variant with amino acid sequence highly homologous to that of the hen histone H5, however the arginine content in the proteins differs (3 mol% in the frog erythrocyte H1 and 12 mol% in the hen erythrocyte H5). On the other hand histone H5 from trout being significantly different in the primary structure from the hen histone H5 is at the same time rich in arginine (9 mol%). The nucleosomal repeat length, estimated by using agarose gel electrophoresis is 201, 213 and 213 b.p. in erythrocyte chromatin from frog, trout and hen, correspondingly. Chromatin packing density in fixed nuclei from erythrocytes of frog, trout and hen as determined using cytophotometric measurements is 0.144, 0.444 and 530 pg/mu 3, correspondingly. The data support the previously made suggestion that the increase in arginine content in nucleosomal linker proteins is connected with the increase of chromatin compaction in the nuclei and elongation of the linker in the nucleosome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号