首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites.  相似文献   

2.
3.
Hu K 《PLoS pathogens》2008,4(1):e10
The apicomplexans are a large group of parasitic protozoa, many of which are important human and animal pathogens, including Plasmodium falciparum and Toxoplasma gondii. These parasites cause disease only when they replicate, and their replication is critically dependent on the proper assembly of the parasite cytoskeletons during cell division. In addition to their importance in pathogenesis, the apicomplexan parasite cytoskeletons are spectacular structures. Therefore, understanding the cytoskeletal biogenesis of these parasites is important not only for parasitology but also of general interest to broader cell biology. Previously, we found that the basal end of T. gondii contains a novel cytoskeletal assembly, the basal complex, a cytoskeletal compartment constructed in concert with the daughter cortical cytoskeleton during cell division. This study focuses on key events during the biogenesis of the basal complex using high resolution light microscopy, and reveals that daughter basal complexes are established around the duplicated centrioles independently of the structural integrity of the daughter cortical cytoskeleton, and that they are dynamic "caps" at the growing ends of the daughters. Compartmentation and polarization of the basal complex is first revealed at a late stage of cell division upon the recruitment of an EF-hand containing calcium binding protein, TgCentrin2. This correlates with the constriction of the basal complex, a process that can be artificially induced by increasing cellular calcium concentration. The basal complex is therefore likely to be a new kind of centrin-based contractile apparatus.  相似文献   

4.
The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites) within the mother cell, using the so-called Inner Membrane Complex (IMC) as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP), also known as Myosin Light Chain 1 (MLC1), a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division.  相似文献   

5.
The apicoplast is a relict plastid essential for viability of the apicomplexan parasites Toxoplasma and Plasmodium. It is surrounded by multiple membranes that proteins, substrates and metabolites must traverse. Little is known about apicoplast membrane proteins, much less their sorting mechanisms. We have identified two sets of apicomplexan proteins that are homologous to plastid membrane proteins that transport phosphosugars or their derivatives. Members of the first set bear N-terminal extensions similar to those that target proteins to the apicoplast lumen. While Toxoplasma gondii lacks this type of translocator, the N-terminal extension from the Plasmodium falciparum sequence was shown to be functional in T. gondii. The second set of translocators lacks an N-terminal targeting sequence. This translocator, TgAPT1, when tagged with HA, localized to multiple apicoplast membranes in T. gondii. Contrasting with the constitutive targeting of luminal proteins, the localization of the translocator varied during the cell cycle. Early-stage parasites showed circumplastid distribution, but as the plastid elongated in preparation for division, vesicles bearing TgAPT1 appeared adjacent to the plastid. After plastid division, the protein resumes a circumplastid colocalization. These studies demonstrate for the first time that vesicular trafficking likely plays a role in the apicoplast biogenesis.  相似文献   

6.
Toxoplasma gondii: the model apicomplexan   总被引:6,自引:0,他引:6  
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites.  相似文献   

7.
The micronemal protein 2 (MIC2) of Toxoplasma gondii shares sequence and structural similarities with a series of adhesive molecules of different apicomplexan parasites. These molecules accumulate, through a yet unknown mechanism, in secretory vesicles (micronemes), which together with tubular and membrane structures form the locomotion and invasion machinery of apicomplexan parasites. Our findings indicated that two conserved motifs placed within the cytoplasmic domain of MIC2 are both necessary and sufficient for targeting proteins to T. gondii micronemes. The first motif is based around the amino acid sequence SYHYY. Database analysis revealed that a similar sequence is present in the cytoplasmic tail of all transmembrane micronemal proteins identified so far in different apicomplexan species. The second signal consists of a stretch of acidic residues, EIEYE. The creation of an artificial tail containing only the two motifs SYHYY and EIEYE in a preserved spacing configuration is sufficient to target the surface protein SAG1 to the micronemes of T. gondii. These findings shed new light on the molecular mechanisms that control the formation of the microneme content and the functional relationship that links these organelles with the endoplasmic reticulum of the parasite.  相似文献   

8.
Membrane skeletons are structural elements that provide mechanical support to the plasma membrane and define cell shape. Here, we identify and characterize a putative protein component of the membrane skeleton of the malaria parasite. The protein, named PbIMC1a, is the structural orthologue of the Toxoplasma gondii inner membrane complex protein 1 (TgIMC1), a component of the membrane skeleton in tachyzoites. Using targeted gene disruption in the rodent malaria species Plasmodium berghei, we show that PbIMC1a is involved in sporozoite development, is necessary for providing normal sporozoite cell shape and mechanical stability, and is essential for sporozoite infectivity in insect and vertebrate hosts. Knockout of PbIMC1a protein expression reduces, but does not abolish, sporozoite gliding locomotion. We identify a family of proteins related to PbIMC1a in Plasmodium and other apicomplexan parasites. These results provide new functional insight in the role of membrane skeletons in apicomplexan parasite biology.  相似文献   

9.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

10.
In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation.  相似文献   

11.
The inner membrane complex (IMC), a series of flattened vesicles at the periphery of apicomplexan parasites, is thought to be important for parasite shape, motility and replication, but few of the IMC proteins that function in these processes have been identified. TgPhIL1, a Toxoplasma gondii protein that was previously identified through photosensitized labeling with 5-[(125)I] iodonapthaline-1-azide, associates with the IMC and/or underlying cytoskeleton and is concentrated at the apical end of the parasite. Orthologs of TgPhIL1 are found in other apicomplexans, but the function of this conserved protein family is unknown. As a first step towards determining the function of TgPhIL1 and its orthologs, we generated a T. gondii parasite line in which the single copy of TgPhIL1 was disrupted by homologous recombination. The TgPhIL1 knockout parasites have a distinctly different morphology than wild-type parasites, and normal shape is restored in the knockout background after complementation with the wild-type allele. The knockout parasites are outcompeted in culture by parasites expressing functional TgPhIL1, and they generate a reduced parasite load in the spleen and liver of infected mice. These findings demonstrate a role for TgPhIL1 in the morphology, growth and fitness of T. gondii tachyzoites.  相似文献   

12.
Tosini F  Trasarti E  Pozio E 《Parassitologia》2006,48(1-2):105-107
The availability of a bulk of genomic data of Apicomplexa parasites is a unique opportunity to identify groups of related proteins that are characteristic of this phylum. The Cpa135 protein of Cryptosporidium parvum is expressed and secreted through the apical complex at the invasive stage of sporozoite. This protein is characterised by an LCCL domain, a common trait of various secreted proteins within Apicomplexa. Using the Cpa135 as a "virtual template", we have identified Cpa135 orthologous genes in four apicomplexan species (Plasmodium falciparum, Theileria parva, Toxoplasma gondii and Eimeria tenella). In addition, the architecture of the deduced proteins shows that the Cpa135-related proteins are a distinct family among the apicomplexan LCCL proteins.  相似文献   

13.
The obligate intracellular protozoan Toxoplasma gondii belongs to the phylum Apicomplexa, which is composed of numerous parasites causing major diseases such as malaria, toxoplasmosis and coccidiosis. The life cycle of T. gondii involves developmental processes from one stage to another with both asexual and sexual parasitic forms. Throughout their life cycle, some apicomplexan parasites accumulate a crystalline storage polysaccharide analogous to amylopectin within the cytoplasm. In T. gondii, both the slowly dividing encysted bradyzoites and the sporozoites of the sexual stage contain a high number of amylopectin granules (AG), while the rapidly replicating tachyzoites are devoid of amylopectin. It is thought that this storage polysaccharide may represent an energy reserve that could fuel the transition from one developmental stage to another one. At present, by comparison to glycogen and plant starch, little is known about the biosynthesis, structure and biological functions of amylopectin in T. gondii. Here, we describe an in vitro system allowing the production and purification of a large amount of amylopectin, which has been subjected to detailed biochemical and structural analyses. Our data indicate that T. gondii synthesizes a genuine amylopectin following changes in the environmental conditions and that this storage polysaccharide differs from glycogen and starch in terms of glucan chain length.  相似文献   

14.
Toxoplasma gondii is a unicellular eukaryotic pathogen that belongs to the Apicomplexa phylum, which encompasses some of the deadliest pathogens of medical and veterinary importance. The centrosome is key to the organisation and coordination of the cell cycle and division of apicomplexan parasites. The T. gondii centrosome possesses a particular bipartite structure (outer and inner cores). One of the main roles of the centrosome is to ensure proper coordination of karyokinesis. However, how these 2 events are coordinated is still unknown in T. gondii, for which the centrosome components are poorly described. To gain more insights into the biology and the composition of the T. gondii centrosome, we characterised a protein that resides at the interface of the outer and inner core centrosomes. TgCep530 is a large coiled‐coil protein with an essential role in the survival of the parasite. Depletion of this protein leads to the accumulation of parasites lacking nuclei and disruption of the normal cell cycle. Lack of TgCep530 results in a discoordination between the nuclear cycle and the budding cycle that yields fully formed parasites without nuclei. TgCep530 has a crucial role in the coordination of karyokinesis and cytokinesis.  相似文献   

15.
16.
The histone acetyltransferase GCN5 acetylates nucleosomal histones to alter gene expression. How GCN5 gains entry into the nucleus of the cell has not been determined. We have mapped a six-amino acid motif (RKRVKR) that serves as a necessary and sufficient nuclear localization signal (NLS) for GCN5 in the protozoan pathogen Toxoplasma gondii (TgGCN5). Virtually nothing is known about nucleocytoplasmic transport in these parasites (phylum Apicomplexa), and this study marks the first demonstrated NLS delineated for members of the phylum. The TgGCN5 NLS has predictive value because it successfully identifies other nuclear proteins in three different apicomplexan genomic databases. Given the basic composition of the T. gondii NLS, we hypothesized that TgGCN5 physically interacts with importin-alpha, the main transport receptor in the importin/karyopherin nuclear import pathway. We cloned the importin-alpha gene from T. gondii (TgIMPalpha), which encodes a protein of 545 amino acids that possesses an importin-beta-binding domain and armadillo/beta-catenin-like repeats. In vitro co-immunoprecipitation experiments confirm that TgIMPalpha directly interacts with TgGCN5, but this interaction is abolished if the TgGCN5 NLS is deleted. Taken together, these data argue that TgGCN5 gains access to the parasite nucleus by interacting with TgIMPalpha. Bioinformatics analysis of the T. gondii genome reveals that other components of the importin pathway are present in the organism. This study demonstrates the utility of T. gondii as a model for the study of nucleocytoplasmic trafficking in early eukaryotic cells.  相似文献   

17.
Besteiro S 《Autophagy》2012,8(3):435-437
Toxoplasma gondii belongs to the phylum Apicomplexa, a diverse group of early branching unicellular eukaryotes related to dinoflagellates and ciliates. Like several other Apicomplexa such as Plasmodium (the causative agent of malaria), T. gondii is a human pathogen responsible for a potentially lethal disease called toxoplasmosis. Most Apicomplexa have complex life cycles, involving intermediate hosts and vectors, which include obligatory intracellular developmental stages. In the case of malaria and toxoplasmosis, it is that replicative process, leading to the ultimate lysis of the host cell, which is causing the symptoms of the disease. For Toxoplasma, the invasive and fast-replicating form of the parasite is called the tachyzoite. While autophagy has been a fast-growing field of research in recent years, not much was known about the relevance of this catabolic process in medically important apicomplexan parasites. Vesicles resembling autophagosomes had been described in drug-treated Plasmodium parasites in the early 1970s and a potential role for autophagy in organelle recycling during differentiation between Plasmodium life stages has also been recently described. Interestingly, recent database searches have identified putative orthologs of the core machinery responsible for the formation of autophagosomes in several protists, including Toxoplasma. In spite of an apparently reduced machinery (only about one-third of the yeast ATG genes appear to be conserved), T. gondii seemed thus able to perform macroautophagy, but the cellular functions of the pathway for this parasite remained to be demonstrated.  相似文献   

18.
The plant-type ferredoxin/ferredoxin-NADP(+) reductase (Fd/FNR) redox system found in parasites of the phylum Apicomplexa has been proposed as a target for novel drugs used against life-threatening diseases such as malaria and toxoplasmosis. Like many proteins from these protists, apicomplexan FNRs are characterized by the presence of unique peptide insertions of variable length and yet unknown function. Since three-dimensional data are not available for any of the parasite FNRs, we used limited proteolysis to carry out an extensive study of the conformation of Toxoplasma gondii FNR. This led to identification of 11 peptide bonds susceptible to the action of four different proteases. Cleavage sites are clustered in four regions of the enzyme, which include two of its three species-specific insertions. Such regions are thus predicted to form flexible surface loops. The protein substrate Fd protected FNR against cleavage both at its N-terminal peptide and at its largest sequence insertion (28 residues). Deletion by protein engineering of the species-specific subdomain containing the latter insertion resulted in an enzyme form that, although catalytically active, displayed a 10-fold decreased affinity for Fd. In contrast, removal of the first 15 residues of the enzyme unexpectedly enhanced its interaction with Fd. Thus, two flexible polypeptide regions of T. gondii FNR are involved in Fd interaction but have opposite roles in modulating the binding affinity for the protein ligand. In this respect, T. gondii FNR differs from plant FNRs, where the N-terminal peptide contributes to the stabilization of their complex with Fd.  相似文献   

19.
Propeptides regulate protein function and trafficking in many eukaryotic systems and have emerged as important features of regulated secretory proteins in parasites of the phylum Apicomplexa. Regulated protein secretion from micronemes and host cell invasion are inextricably linked and essential processes for the apicomplexan parasite Toxoplasma gondii. TgM2AP is a propeptide-containing microneme protein found in a heterohexameric complex with the microneme protein TgMIC2, a protein that has a demonstrated fundamental role in gliding motility and invasion. TgM2AP function is also central to these processes, because disruption of TgM2AP (m2apKO) results in secretory retention of TgMIC2, leading to reduced TgMIC2 secretion from the micronemes and impaired invasion. Because the TgM2AP propeptide is predicted to be processed in an intracellular site near where TgMIC2 is retained in m2apKO parasites, we hypothesized that the propeptide and its proteolytic removal influence trafficking and secretion of the complex. We found that proTgM2AP traffics through endosomal compartments and that deletion of the propeptide leads to defective trafficking of the complex within or near this site, resulting in aberrant processing and decreased secretion of TgMIC2, impaired invasion, and reduced virulence in vivo, mirroring the phenotypes observed in m2apKO parasites. In contrast, mutation of several cleavage site residues resulted in normal localization, but it affected the stability and secretion of the complex from the micronemes. Therefore, the propeptide and its cleavage site influence distinct aspects of TgMIC2-M2AP function, with both impacting the outcome of infection.  相似文献   

20.
The substrate-dependent movement of apicomplexan parasites such as Toxoplasma gondii and Plasmodium sp. is driven by the interaction of a type XIV myosin with F-actin. A complex containing the myosin-A heavy chain, a myosin light chain, and the accessory protein GAP45 is attached to the membranes of the inner membrane complex (IMC) through its tight interaction with the integral membrane glycoprotein GAP50. For the interaction of this complex with F-actin to result in net parasite movement, it is necessary that the myosin be immobilized with respect to the parasite and the actin with respect to the substrate the parasite is moving on. We report here that the myosin motor complex of Toxoplasma is firmly immobilized in the plane of the IMC. This does not seem to be accomplished by direct interactions with cytoskeletal elements. Immobilization of the motor complex, however, does seem to require cholesterol. Both the motor complex and the cholesterol are found in detergent-resistant membrane domains that encompass a large fraction of the inner membrane complex surface. The observation that the myosin XIV motor complex of Toxoplasma is immobilized within this cholesterol-rich membrane likely extends to closely related pathogens such as Plasmodium and possibly to other eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号