首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microbial secondary metabolite production is frequently associated with developmental processes such as sporulation, but there are few cases where this correlation is understood. Recent work with the filamentous fungus Aspergillus nidulans has provided new insights into the mechanisms coordinating production of the toxic secondary metabolite sterigmatocystin with asexual sporulation. These processes have been shown to be linked through a common need to inactivate a heterotrimeric G protein dependent signaling pathway that, when active, serves to stimulate growth while blocking both sporulation and sterigmatocystin biosynthesis.  相似文献   

2.
3.
Deletion of the spermidine synthase gene in the fungus Aspergillus nidulans results in a strain, deltaspdA, which requires spermidine for growth and accumulates putrescine as the sole polyamine. Vegetative growth but not sporulation or sterigmatocystin production is observed when deltaspdA is grown on media supplemented with 0.05-0.10 mM exogenous spermidine. Supplementation of deltaspdA with >/= 0.10 mM spermidine restores sterigmatocystin production and >/= 0.50 mM spermidine produces a phenotype with denser asexual spore production and decreased radial hyphal growth compared with the wild type. DeltaspdA spores germinate in unsupplemented media but germ tube growth ceases after 8 h upon which time the spores swell to approximately three times their normal diameter. Hyphal growth is resumed upon addition of 1.0 mM spermidine. Suppression of a G protein signalling pathway could not force asexual sporulation and sterigmatocystin production in deltaspdA strains grown in media lacking spermidine but could force both processes in deltaspdA strains supplemented with 0.05 mM spermidine. These results show that increasing levels of spermidine are required for the transitions from (i) germ tube to hyphal growth and (ii) hyphal growth to tissue differentiation and secondary metabolism. Suppression of G protein signalling can over-ride the spermidine requirement for the latter but not the former transition.  相似文献   

4.
Fungi possess genetic systems to regulate the expression of genes involved in complex processes such as development and secondary metabolite biosynthesis. The product of the velvet gene veA, first identified and characterized in Aspergillus nidulans, is a key player in the regulation of both of these processes. Since its discovery and characterization in many Aspergillus species, VeA has been found to have similar functions in other fungi, including the Dothideomycete Mycosphaerella graminicola. Another Dothideomycete, Dothistroma septosporum, is a pine needle pathogen that produces dothistromin, a polyketide toxin very closely related to aflatoxin (AF) and sterigmatocystin (ST) synthesized by Aspergillus spp. Dothistromin is unusual in that, unlike most other secondary metabolites, it is produced mainly during the early exponential growth phase in culture. It was therefore of interest to determine whether the regulation of dothistromin production in D. septosporum differs from the regulation of AF/ST in Aspergillus spp. To begin to address this question, a veA ortholog was identified and its function analyzed in D. septosporum. Inactivation of the veA gene resulted in reduced dothistromin production and a corresponding decrease in expression of dothistromin biosynthetic genes. Expression of other putative secondary metabolite genes in D. septosporum such as polyketide synthases and non-ribosomal peptide synthases showed a range of different responses to loss of Ds-veA. Asexual sporulation was also significantly reduced in the mutants, accompanied by a reduction in the expression of a putative stuA regulatory gene. The mutants were, however, able to infect Pinus radiata seedlings and complete their life cycle under laboratory conditions. Overall this work suggests that D. septosporum has a veA ortholog that is involved in the control of both developmental and secondary metabolite biosynthetic pathways.  相似文献   

5.
6.
7.
Many marine organisms are luminescent. The proteins that produce the light include a primary light producer (aequorin or luciferase) and often a secondary photoprotein that red shifts the light for better penetration in the ocean. Green fluorescent protein is one such secondary protein. It is remarkable in that it autocatalyzes the formation of its own fluorophore and thus can be expressed in variety of organisms in its fluorescent form. The recent determination of its 3D structure and other physical characterizations are revealing its molecular mechanism of action  相似文献   

8.
Recently, two structures of the Ser/Thr phosphorylase calcineurin in complex with FK506 and its cognate immunophilin, FKBP12, have been reported, both solved by small pharmaceutical companies focused on structure-based drug design. A realization, however, that the toxicities associated with calcineurin-mediated immunosuppressants might be mechanism based has driven the current interest in alternative approaches to autoimmunity prophylaxis and preventing transplant rejection. Regulatory approval in 1995 of the immunosuppressant prodrug mycophenolate mofetil, whose active metabolite, mycophenolic acid, inhibits inosine monophosphate dehydrogenase, has focused attention on the potential significance of the de novo purine-biosynthesis pathway as a target for immunosuppressive drugs, leading ultimately to the solution of enzyme structure as a drug design target. As this and other clinically relevant targets are discovered, elaborated and refined via the activity of their cognate agents (as was the case for the phosphatase calcineurin via the activity of cyclosporin), a critical opportunity should ensue for structural biology to exert a profound effect on the future development of these therapies.  相似文献   

9.
10.
Relationship between secondary metabolism and fungal development.   总被引:5,自引:0,他引:5  
Filamentous fungi are unique organisms-rivaled only by actinomycetes and plants-in producing a wide range of natural products called secondary metabolites. These compounds are very diverse in structure and perform functions that are not always known. However, most secondary metabolites are produced after the fungus has completed its initial growth phase and is beginning a stage of development represented by the formation of spores. In this review, we describe secondary metabolites produced by fungi that act as sporogenic factors to influence fungal development, are required for spore viability, or are produced at a time in the life cycle that coincides with development. We describe environmental and genetic factors that can influence the production of secondary metabolites. In the case of the filamentous fungus Aspergillus nidulans, we review the only described work that genetically links the sporulation of this fungus to the production of the mycotoxin sterigmatocystin through a shared G-protein signaling pathway.  相似文献   

11.
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified.  相似文献   

12.
13.
14.
Relationship between Secondary Metabolism and Fungal Development   总被引:27,自引:0,他引:27       下载免费PDF全文
Filamentous fungi are unique organisms—rivaled only by actinomycetes and plants—in producing a wide range of natural products called secondary metabolites. These compounds are very diverse in structure and perform functions that are not always known. However, most secondary metabolites are produced after the fungus has completed its initial growth phase and is beginning a stage of development represented by the formation of spores. In this review, we describe secondary metabolites produced by fungi that act as sporogenic factors to influence fungal development, are required for spore viability, or are produced at a time in the life cycle that coincides with development. We describe environmental and genetic factors that can influence the production of secondary metabolites. In the case of the filamentous fungus Aspergillus nidulans, we review the only described work that genetically links the sporulation of this fungus to the production of the mycotoxin sterigmatocystin through a shared G-protein signaling pathway.  相似文献   

15.
Recent advances in the genetics of familial Alzheimer's disease provide direction for therapeutic strategies to alter the progressive neurodegeneration. The rationale is particularly strong for targeting the deposition of amyloid into neuritic plaques, but attention has also turned to abnormalities in apoptosis and signal-transduction processes.  相似文献   

16.
17.
The giant vesicle is becoming an object of intense scrutiny by chemists, biologists, and physicists who are interested in membrane behavior. Recent advances include new models to explain morphological changes, new experimental methods for studying vesicle adhesion, layering and adsorption, and new cataloging of ‘cytomimetic’ processes.  相似文献   

18.
Streptomyces fradiae produces several extracellular proteases and many of these are inducible. An 8.8 kb DNA fragment of Streptomyces fradiae cloned on pIJ699 caused increased protease activity in Streptomyces lividans.Clones carrying this recombinant plasmid showed a significant delay in sporulation. A protein of 18 kDa was purified from the extracellular proteins secreted by the host carrying the recombinant plasmid. Further characterization showed that this protease is a metalloprotease.  相似文献   

19.
A total of 69 samples of hay and straw collected during the winter period of 1984/85 were surveyed for their contamination by Aspergillus versicolor. The percentage of A. versicolor-positive samples was 14.5%. Nineteen A. versicolor strains mainly isolated from roughage were tested for the production of sterigmatocystin. All of the isolates examined were capable of producing different levels of sterigmatocystin on a cracked corn substrate. The majority of these strains were highly toxigenic; 53% of the isolates produced more than 500 mg/kg of sterigmatocystin. These findings suggest that corn is a very suitable substrate for sterigmatocystin production and that particularly in the surface layers of feed stocks and corn silos such toxigenic strains of A. versicolor can produce considerable growth and possibly sterigmatocystin, too.  相似文献   

20.
The representation of temporal information can be examined from both a neurological and a computational perspective. Recent evidence suggests that two subcortical structures, the cerebellum and basal ganglia, play a critical role in the timing of both movement and perception. At a computational level, models of an internal clock have been developed in which timing is based on either endogeneous oscillatory processes or distributed interval-based representations derived from relatively slow physiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号