首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Smad4 is required to regulate the fate of cranial neural crest cells   总被引:1,自引:0,他引:1  
Ko SO  Chung IH  Xu X  Oka S  Zhao H  Cho ES  Deng C  Chai Y 《Developmental biology》2007,312(1):435-447
Smad4 is the central mediator for TGF-β/BMP signals, which are involved in regulating cranial neural crest (CNC) cell formation, migration, proliferation and fate determination. It is unclear whether TGF-β/BMP signals utilize Smad-dependent or -independent pathways to control the development of CNC cells. To investigate the functional significance of Smad4 in regulating CNC cells, we generated mice with neural crest specific inactivation of the Smad4 gene. Our study shows that Smad4 is not required for the migration of CNC cells, but is required in neural crest cells for the development of the cardiac outflow tract. Smad4 is essential in mediating BMP signaling in the CNC-derived ectomesenchyme during early stages of tooth development because conditional inactivation of Smad4 in neural crest derived cells results in incisor and molar development arrested at the dental lamina stage. Furthermore, Smad-mediated TGF-β/BMP signaling controls the homeobox gene patterning of oral/aboral and proximal/distal domains within the first branchial arch. At the cellular level, a Smad4-mediated downstream target gene(s) is required for the survival of CNC cells in the proximal domain of the first branchial arch. Smad4 mutant mice show underdevelopment of the first branchial arch and midline fusion defects. Taken together, our data show that TGF-β/BMP signals rely on Smad-dependent pathways in the ectomesenchyme to mediate epithelial-mesenchymal interactions that control craniofacial organogenesis.  相似文献   

3.
Cranial neural crest (CNC) cells migrate extensively, typically in a pattern of cell streams. In Xenopus, these cells express the adhesion molecule Xcadherin-11 (Xcad-11) as they begin to emigrate from the neural fold. In order to study the function of this molecule, we have overexpressed wild-type Xcad-11 as well as Xcad-11 mutants with cytoplasmic (deltacXcad-11) or extracellular (deltaeXcad-11) deletions. Green fluorescent protein (GFP) was used to mark injected cells. We then transplanted parts of the fluorescent CNC at the premigratory stage into non-injected host embryos. This altered not only migration, but also the expression of neural crest markers. Migration of transplanted cranial neural crest cells was blocked when full-length Xcad-11 or its mutant lacking the beta-catenin-binding site (deltacXcad-11) was overexpressed. In addition, the expression of neural crest markers (AP-2, Snail and twist) diminished within the first four hours after grafting, and disappeared completely after 18 hours. Instead, these grafts expressed neural markers (2G9, nrp-I and N-Tubulin). Beta-catenin co-expression, heterotopic transplantation of CNC cells into the pharyngeal pouch area or both in combination failed to prevent neural differentiation of the grafts. By contrast, deltaeXcad-11 overexpression resulted in premature emigration of cells from the transplants. The AP-2 and Snail patterns remained unaffected in these migrating grafts, while twist expression was strongly reduced. Co-expression of deltaeXcad-11 and beta-catenin was able to rescue the loss of twist expression, indicating that Wnt/beta-catenin signalling is required to maintain twist expression during migration. These results show that migration is a prerequisite for neural crest differentiation. Endogenous Xcad-11 delays CNC migration. Xcad-11 expression must, however, be balanced, as overexpression prevents migration and leads to neural marker expression. Although Wnt/beta-catenin signalling is required to sustain twist expression during migration, it is not sufficient to block neural differentiation in non-migrating grafts.  相似文献   

4.
Experimental evidence that the neural crest participates in tooth development in any osteichthyan fish has so far been lacking. Using vital dye cell-lineage tracking, we demonstrate that trigeminal stream neural crest cells contribute to the dental papilla of developing teeth in the Australian lungfish. Trigeminal neural crest cells labeled before migration have been traced during the earliest stages of tooth development. Neural crest cells from a single midbrain locus were relocated as ectomesenchyme in all developing teeth of the lungfish regardless of their topographical position in the dentition. These cells remain at the dental papilla interface and become cells committed to dentine production. Our findings provide the first cell-lineage evidence that cranial neural crest is fated to ectomesenchyme for tooth development and dentine production in the living sister-group to tetrapods. This shows that cranial neural crest contribution to teeth is conserved from this node on the tetrapod phylogeny.  相似文献   

5.
Neural crest contribution to mammalian tooth formation   总被引:2,自引:0,他引:2  
The cranial neural crest cells, which are specialized cells of neural origin, are central to the process of mammalian tooth development. They are the only source of mesenchyme able to sustain tooth development, and give rise not only to most of the dental tissues, but also to the periodontium, the surrounding tissues that hold teeth in position. Tooth organogenesis is regulated by a series of interactions between cranial neural crest cells and the oral epithelium. In the development of a tooth, the epithelium covering the inside of the developing oral cavity provides the first instructive signals. Signaling molecules secreted by the oral epithelium 1) establish large cellular fields competent to form a specific tooth shape (mono- or multicuspid) along a proximodistal axis; 2) define an oral (capable of forming teeth) and non-oral mesenchyme along a rostrocaudal axis; and 3) position the sites of future tooth development. The critical information to model tooth shape resides later in the neural crest-derived mesenchyme. Cranial neural crest cells ultimately differentiate into highly specialized cell types to produce mature dental organs. Some cranial neural crest cells located in the dental pulp, however, maintain plasticity in their developmental potential up to postnatal life, offering new prospects for regeneration of dental tissues.  相似文献   

6.
The importance of BMP receptor Ia (BMPRIa) mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa) in cranial neural crest (CNC) cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.  相似文献   

7.
8.
Han J  Ito Y  Yeo JY  Sucov HM  Maas R  Chai Y 《Developmental biology》2003,261(1):183-196
Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.  相似文献   

9.
TGF-β subtypes are expressed in tissues derived from cranial neural crest cells during early mouse craniofacial development. TGF-β signaling is critical for mediating epithelial-mesenchymal interactions, including those vital for tooth morphogenesis. However, it remains unclear how TGF-β signaling contributes to the terminal differentiation of odontoblast and dentin formation during tooth morphogenesis. Towards this end, we generated mice with conditional inactivation of the Tgfbr2 gene in cranial neural crest derived cells. Odontoblast differentiation was substantially delayed in the Tgfbr2fl/fl;Wnt1-Cre mutant mice at E18.5. Following kidney capsule transplantation, Tgfbr2 mutant tooth germs expressed a reduced level of Col1a1 and Dspp and exhibited defects including decreased dentin thickness and absent dentinal tubules. In addition, the expression of the intermediate filament nestin was decreased in the Tgfbr2 mutant samples. Significantly, exogenous TGF-β2 induced nestin and Dspp expression in dental pulp cells in the developing tooth organ. Our data suggest that TGF-β signaling controls odontoblast maturation and dentin formation during tooth morphogenesis.  相似文献   

10.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   

11.
TGF-beta superfamily members signal through a heteromeric receptor complex to regulate craniofacial development. TGF-beta type II receptor appears to bind only TGF-beta, whereas TGF-beta type I receptor (ALK5) also binds to ligands in addition to TGF-beta. Our previous work has shown that conditional inactivation of Tgfbr2 in the neural crest cells of mice leads to severe craniofacial bone defects. In this study, we examine and compare the defects of TGF-beta type II receptor (Wnt1-Cre;Tgfbr2(fl/fl)) and TGF-beta type I receptor/Alk5 (Wnt1-Cre;Alk5(fl)(/fl)) conditional knockout mice. Loss of Alk5 in the neural crest tissue resulted in phenotypes not seen in the Tgfbr2 mutant, including delayed tooth initiation and development, defects in early mandible patterning and altered expression of key patterning genes including Msx1, Bmp4, Bmp2, Pax9, Alx4, Lhx6/7 and Gsc. Alk5 controls the survival of CNC cells by regulating expression of Gsc and other genes in the proximal aboral region of the developing mandible. We conclude that ALK5 regulates tooth initiation and early mandible patterning through a pathway independent of Tgfbr2. There is an intrinsic requirement for Alk5 signal in regulating the fate of CNC cells during tooth and mandible development.  相似文献   

12.
The neural crest (NC) is a stem cell-like population that arises at the border of neural and non-neural ectoderm. During development, NC undergoes an epithelio-mesenchymal transition (EMT), i.e. loss of epithelial junctions and acquisition of pro-migratory properties, invades the entire embryo and differentiates into a wide diversity of terminal tissues. We have studied the implication of Rho pathways in NC development and previously showed that RhoV is required for cranial neural crest (CNC) cell specification. We show here that the non-canonical Wnt response rhoU/wrch1 gene, closely related to rhoV, is also expressed in CNC cells but at later stages. Using both gain- and loss-of-function experiments, we demonstrate that the level of RhoU expression is critical for CNC cell migration and subsequent differentiation into craniofacial cartilages. In in vitro cultures, RhoU activates pathways that cooperate with PAK1 and Rac1 in epithelial adhesion, cell spreading and directional cell migration. These data support the conclusion that RhoU is an essential regulator of CNC cell migration.  相似文献   

13.
Wnt activity is critical in craniofacial morphogenesis. Dysregulation of Wnt/β-catenin signaling results in significant alterations in the facial form, and has been implicated in cleft palate phenotypes in mouse and man. In zebrafish, we show that wnt9a is expressed in the pharyngeal arch, oropharyngeal epithelium that circumscribes the ethmoid plate, and ectodermal cells superficial to the lower jaw structures. Alcian blue staining of morpholino-mediated knockdown of wnt9a results in loss of the ethmoid plate, absence of lateral and posterior parachordals, and significant abrogation of the lower jaw structures. Analysis of cranial neural crest cells in the sox10:eGFP transgenic demonstrates that the wnt9a is required early during pharyngeal development, and confirms that the absence of Alcian blue staining is due to absence of neural crest derived chondrocytes. Molecular analysis of genes regulating cranial neural crest migration and chondrogenic differentiation suggest that wnt9a is dispensable for early cranial neural crest migration, but is required for chondrogenic development of major craniofacial structures. Taken together, these data corroborate the central role for Wnt signaling in vertebrate craniofacial development, and reveal that wnt9a provides the signal from the pharyngeal epithelium to support craniofacial chondrogenic morphogenesis in zebrafish.  相似文献   

14.
15.
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration–dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2–3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis.  相似文献   

16.
Development of the vertebrate craniofacial structures requires precise coordination of cell migration, proliferation, adhesion and differentiation. Patterning of the Meckel''s cartilage, a first pharyngeal arch derivative, involves the migration of cranial neural crest (CNC) cells and the progressive partitioning, proliferation and organization of differentiated chondrocytes. Several studies have described CNC migration during lower jaw morphogenesis, but the details of how the chondrocytes achieve organization in the growth and extension of Meckel’s cartilage remains unclear. The sox10 restricted and chemically induced Cre recombinase-mediated recombination generates permutations of distinct fluorescent proteins (RFP, YFP and CFP), thereby creating a multi-spectral labeling of progenitor cells and their progeny, reflecting distinct clonal populations. Using confocal time-lapse photography, it is possible to observe the chondrocytes behavior during the development of the zebrafish Meckel’s cartilage.Multispectral cell labeling enables scientists to demonstrate extension of the Meckel’s chondrocytes. During extension phase of the Meckel’s cartilage, which prefigures the mandible, chondrocytes intercalate to effect extension as they stack in an organized single-cell layered row. Failure of this organized intercalating process to mediate cell extension provides the cellular mechanistic explanation for hypoplastic mandible that we observe in mandibular malformations.  相似文献   

17.
BMP signaling is essential for a wide variety of developmental processes. To evaluate the role of Bmp2/4 in cranial neural crest (CNC) formation or differentiation after its migration into the branchial arches, we used Xnoggin to block their activities in specific areas of the CNC in transgenic mice. This resulted in depletion of CNC cells from the targeted areas. As a consequence, the branchial arches normally populated by the affected neural crest cells were hypomorphic and their skeletal and neural derivatives failed to develop. In further analyses, we have identified Bmp2 as the factor required for production of migratory cranial neural crest. Its spatial and temporal expression patterns mirror CNC emergence and Bmp2 mutant embryos lack both branchial arches and detectable migratory CNC cells. Our results provide functional evidence for an essential role of BMP signaling in CNC development.  相似文献   

18.
Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2fl/fl;Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2fl/fl;Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2fl/fl;Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.  相似文献   

19.
Neural crest development involves epithelial-mesenchymal transition (EMT), during which epithelial cells are converted into individual migratory cells. Notably, the same signaling pathways regulate EMT function during both development and tumor metastasis. p53 plays multiple roles in the prevention of tumor development; however, its precise roles during embryogenesis are less clear. We have investigated the role of p53 in early cranial neural crest (CNC) development in chick and mouse embryos. In the mouse, p53 knockout embryos displayed broad craniofacial defects in skeletal, neuronal and muscle tissues. In the chick, p53 is expressed in CNC progenitors and its expression decreases with their delamination from the neural tube. Stabilization of p53 protein using a pharmacological inhibitor of its negative regulator, MDM2, resulted in reduced SNAIL2 (SLUG) and ETS1 expression, fewer migrating CNC cells and in craniofacial defects. By contrast, electroporation of a dominant-negative p53 construct increased PAX7(+) SOX9(+) CNC progenitors and EMT/delamination of CNC from the neural tube, although the migration of these cells to the periphery was impaired. Investigating the underlying molecular mechanisms revealed that p53 coordinates CNC cell growth and EMT/delamination processes by affecting cell cycle gene expression and proliferation at discrete developmental stages; disruption of these processes can lead to craniofacial defects.  相似文献   

20.
Dental pulp stem cells (DPSCs) are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s) have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs) gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号