首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In E. coli aminoethylhomocysteine (AEHC) and aminopropylcysteine (APC) do not affect intracellular lysine transport thus showing that they cannot bind the E. coli lysine transport systems. In CHO cells AEHC and APC inhibit lysine and arginine transport, AEHC more than APC, thus indicating that they can bind the cationic aminoacid transport system. They inhibit also leucine transport, APC more than AEHC. Some possible relationships between their structure and their effects on transport systems are considered. AEHC and APC are not activated by aminoacyl-tRNA synthetase preparations from bacterial and mammalian sources.  相似文献   

2.
We have deleted the chromosomal ant gene from Escherichia coli by substitution with the kan gene, which encodes kanamycin resistance. The delta ant strains obtained cannot adapt to high sodium concentrations (700 mM, pH 6.8), which do not affect the wild type. The Na+ sensitivity of delta ant is pH dependent, increasing at alkaline pH. Thus at pH 8.5, 100 mM NaCl retard growth of delta ant with no effect on the wild type. The delta ant strains also cannot challenge the toxic effects of Li+ ions, a substrate of the Na+/H+ antiporter system. However, growth of these strains is normal on carbon sources which require Na+ ions for transport and growth. Moreover, antiporter activity, as measured in everted membrane vesicles, is not significantly impaired. A detailed analysis of the remaining antiporter activity in a delta ant strain reveals kinetic properties which differ from those displayed by the ant protein: (a) Km for transport of Li+ ions is about 15 times higher and (b) the activity is practically independent of intracellular pH. Our results demonstrate the presence of an alternative Na+/H+ antiporter(s) in E. coli, additional to ant system.  相似文献   

3.
The nature of the ions that are translocated by Escherichia coli and Paracoccus denitrificans complexes I was investigated. We observed that E. coli complex I was capable of proton translocation in the same direction to the established deltapsi, showing that in the tested conditions, the coupling ion is the H(+). Furthermore, Na(+) transport to the opposite direction was also observed, and, although Na(+) was not necessary for the catalytic or proton transport activities, its presence increased the latter. We also observed H(+) translocation by P. denitrificans complex I, but in this case, H(+) transport was not influenced by Na(+) and also Na(+) transport was not observed. We concluded that E. coli complex I has two energy coupling sites (one Na(+) independent and the other Na(+) dependent), as previously observed for Rhodothermus marinus complex I, whereas the coupling mechanism of P. denitrificans enzyme is completely Na(+) independent. This work thus shows that complex I energy transduction by proton pumping and Na(+)/H(+) antiporting is not exclusive of the R. marinus enzyme. Nevertheless, the Na(+)/H(+) antiport activity seems not to be a general property of complex I, which may be correlated with the metabolic characteristics of the organisms.  相似文献   

4.
The transport of D-alanine by Escherichia coli K-12 neither requires nor is stimulated by Na+. The transport of D-alanine by the marine bacterium Alteromonas haloplanktis 214 requires Na+ specifically. Mutants of E. coli which were unable to transport D-alanine were isolated by enrichment for D-cycloserine resistance. One of the mutants was transformed with a gene bank of A. haloplanktis chromosomal DNA. Two transformants, E. coli RM1(pPM1) and E. coli RM1(pPM2) were able to transport D-alanine by a Na+-dependent mechanism. Li+ and K+ were unable to replace Na+. Both transformants contained chimeric plasmids with inserts which hybridized with A. haloplanktis but not E. coli chromosomal DNA or each other. Despite the lack of homology between the inserts, Na+-dependent D-alanine transport in the two transformants could not be distinguished either by kinetic studies or by differences in the capacity of various amino acids to compete for D-alanine uptake.  相似文献   

5.
alpha-Methyl lysine was investigated as a potential inhibitor of lysine transport in Escherichia coli and Bacillus sphaericus. At equimolar concentrations, no inhibition was observed in either organism, but at 10X and 100X the lysine concentration, alpha-methyl lysine caused a 20-50% reduction in the initial rate of lysine uptake in both bacteria. A similar inhibitory effect was observed with epsilon-N-methyl lysine on lysine uptake in B. sphaericus, but not in E. coli. alpha-Methyl lysine had a reduced effect on ornithine uptake and no effect on arginine transport in either bacterium.  相似文献   

6.
Tao Z  Grewer C 《Biochemistry》2005,44(9):3466-3476
Transmembrane glutamate transport by the excitatory amino acid carrier (EAAC1) is coupled to the cotransport of three Na(+) ions and one proton. Previously, we suggested that the mechanism of H(+) cotransport involves protonation of the conserved glutamate residue E373. However, it was also speculated that the cotransported proton is shared in a H(+)-binding network, possibly involving the conserved histidine 295 in the sixth transmembrane domain of EAAC1. Here, we used site-directed mutagenesis together with pre-steady-state electrophysiological analysis of the mutant transporters to test the protonation state of H295 and to determine its involvement in proton transport by EAAC1. Our results show that replacement of H295 with glutamine, an amino acid residue that cannot be protonated, generates a fully functional transporter with transport kinetics that are close to those of the wild-type EAAC1. In contrast, replacement with lysine results in a transporter in which substrate binding and translocation are dramatically inhibited. Furthermore, it is demonstrated that the effect of the histidine 295 to lysine mutation on the glutamate affinity is caused by its positive charge, since wild-type-like affinity can be restored by changing the extracellular pH to 10.0, thus partially deprotonating H295K. Together, these results suggest that histidine 295 is not protonated in EAAC1 at physiological pH and, thus, does not contribute to H(+) cotransport. This conclusion is supported by data from H295C-E373C double mutant transporters which demonstrate that these residues cannot be linked by oxidation, indicating that H295 and E373 are not close in space and do not form a proton binding network. A kinetic scheme is used to quantify the results, which includes binding of the cotransported proton to E373 and binding of a modulatory, nontransported proton to the amino acid side chain in position 295.  相似文献   

7.
Data reported in this paper show that both lysine transport systems in E. coli KL16 can be repressed by lysine and its isologs, thialysine and selenalysine, whereas they are not repressed by ornithine. The repression is specific on lysine transport systems; it is evident with 0.01 mM lysine or isolog concentration and reaches a maximum with 0.1 mM concentration. By comparing the extent of repression by lysine and its isologs, lysine gives the highest and selenalysine the lowest degree of repression. The shift from the repressed to the depressed state is rather immediate once the amino acid is removed from the culture medium.  相似文献   

8.
The role of Na+ in glutamate transport was studied in Escherichia coli B, strain 29-78, which possesses a very high activity of glutamate transport (L. Frank and I. Hopkins, J. Bacteriol., 1969). Energy-depleted cells were exposed to radioactive glutamate in the presence of a sodium gradient, a membrane potential, or both. One hundred- to 200-fold accumulation of the amino acid was attained in the presence of both electrical and chemical driving forces for the sodium ion. Somewhat lower accumulation values were obtained when either chemical or electrical driving forces were applied separately. A chemical driving force was produced by the addition of external Na+ to Na+-free cells. A membrane potential was established by a diffusion potential either of H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone or of SCN-. These results support the hypothesis of a Na+-glutamate cotransport. Na+-driven glutamate transport was also observed in wild-type E. coli B but not in a strain of K-12.  相似文献   

9.
The properties of system y(+)L-mediated transport were investigated on rat system y(+)L transporter, ry(+)LAT1, coexpressed with the heavy chain of cell surface antigen 4F2 in Xenopus oocytes. ry(+)LAT1-mediated transport of basic amino acids was Na(+)-independent, whereas that of neutral amino acids, although not completely, was dependent on Na(+), as is typical of system y(+)L-mediated transport. In the absence of Na(+), lowering of pH increased leucine transport, without affecting lysine transport. Therefore, it is proposed that H(+), besides Na(+) and Li(+), is capable of supporting neutral amino acid transport. Na(+) and H(+) augmented leucine transport by decreasing the apparent K(m) values, without affecting the V(max) values. We demonstrate that although ry(+)LAT1-mediated transport of [(14)C]l-leucine was accompanied by the cotransport of (22)Na(+), that of [(14)C]l-lysine was not. The Na(+) to leucine coupling ratio was determined to be 1:1 in the presence of high concentrations of Na(+). ry(+)LAT1-mediated leucine transport, but not lysine transport, induced intracellular acidification in Chinese hamster ovary cells coexpressing ry(+)LAT1 and 4F2 heavy chain in the absence of Na(+), but not in the presence of physiological concentrations of Na(+), indicating that cotransport of H(+) with leucine occurred in the absence of Na(+). Therefore, for the substrate recognition by ry(+)LAT1, the positive charge on basic amino acid side chains or that conferred by inorganic monovalent cations such as Na(+) and H(+), which are cotransported with neutral amino acids, is presumed to be required. We further demonstrate that ry(+)LAT1, due to its peculiar cation dependence, mediates a heteroexchange, wherein the influx of substrate amino acids is accompanied by the efflux of basic amino acids.  相似文献   

10.
11.
Active transport of glutamate by Escherichia coli K-12 requires both Na(+) and K(+) ions. Increasing the concentration of Na(+) in the medium results in a decrease in the K(m) of the uptake system for glutamate; the capacity is not affected. Glutamate uptake by untreated cells is not stimulated by K(+). K(+)-depleted cells show a greatly reduced capacity for glutamate uptake. Preincubation of such cells in the presence of K(+) fully restores their capacity for glutamate uptake when Na(+) ions are also present in the uptake medium. Addition of either K(+) or Na(+) alone restores glutamate uptake to only about 20% of its maximum capacity in the presence of both cations. Changes in K(+) concentration affect the capacity for glutamate uptake but have no effect on the K(m) of the glutamate transport system. Ouabain does not inhibit the (Na(+)-K(+))-stimulated glutamate uptake by intact cells or spheroplasts of E. coli K-12.  相似文献   

12.
Thialysine and selenalysine cannot substitute lysine as a growth factor for a lysine-requiring E. coli mutant, but can nevertheless be utilized for protein synthesis in the presence of lysine. In order to have information about the effects of lysine on the utilization of the two analogs, the extent of the incorporation of the three aminoacids into newly synthesized proteins has been determined. The analog starts to be utilized by cells growing in a medium containing either analog and lysine when lysine concentration becomes very low. Of the two analogs, thialysine is more easily utilized. In fact thialysine can be utilized when the lysine/thialysine ratio in the medium is 1/25. Selenalysine starts to be utilized when the lysine/selenalysine ratio is 1/200.  相似文献   

13.
Escherichia coli is known to actively extrude sodium ions, but little is known concerning the concentration gradient it can develop. We report here simultaneous measurements, by 23Na NMR, of intracellular and extracellular Na+ concentrations of E. coli cells before and after energization. 23Na spectra in the presence of a paramagnetic shift reagent (dysprosium tripolyphosphate) consisted of two resonances, an unshifted one corresponding to intracellular Na+ and a shifted one corresponding to Na+ in the extracellular medium, including the periplasm. Extracellular Na+ was found to be completely visible despite the presence of a broad component in its resonance; intracellular Na+ was only 45% visible. Measurements of Na+ were made under aerobic and glycolytic conditions. Na+ extrusion and maintenance of a stable low intracellular Na+ concentration were found to correlate with the development and maintenance of proton motive force, a result that is consistent with proton-driven Na+/H+ exchange as a means of Na+ transport. In both respiring and glycolyzing cells, at an extracellular Na+ concentration of 100 mM, the intracellular Na+ concentration observed (4 mM) corresponded to an inwardly directed Na+ gradient with a concentration ratio of about 25. The kinetics of Na+ transport suggest that rapid extrusion of Na+ against its electrochemical gradient may be regulated by proton motive force or intracellular pH.  相似文献   

14.
A gene encoding a Li(+) extrusion system was cloned from the chromosomal DNA of Pseudomonas aeruginosa and expressed in Escherichia coli cells. The gene enabled growth of E. coli KNabc cells, which were unable to grow in the presence of 10 mM LiCl or 0.1 M NaCl because of the lack of major Na(+) (Li(+))/H(+) antiporters. We detected Li(+)/H(+) and Na(+)/H(+) antiport activities in membrane vesicles prepared from E. coli KNabc cells that harbored a plasmid carrying the cloned gene. Activity of this antiporter was pH-dependent with an optimal pH activity between pH 7.5 and 8.5. These properties indicate that this antiporter is different from NhaP, an Na(+)/H(+) antiporter from P. aeruginosa that we reported previously, and that is rather specific to Na(+) but it cannot extrude Li(+) effectively. The gene was sequenced and an open reading frame (ORF) was identified. The amino acid sequence deduced from the ORF showed homology (about 60% identity and 90% similarity) with that of the NhaB Na(+)/H(+) antiporters of E. coli and Vibrio parahaemolyticus. Thus, we designated the antiporter as NhaB of P. aeruginosa. E. coli KNabc carrying the nhaB gene from P. aeruginosa was able to grow in the presence of 10 to 50 mM LiCl, although KNabc carrying nhaP was unable to grow in these conditions. The antiport activity of NhaB from P. aeruginosa was produced in E. coli and showed apparent Km values for Li(+) and Na(+) of 2.0 mM and 1.3 mM, respectively. The antiport activity was inhibited by amiloride with a Ki value for Li(+) and Na(+) of 0.03 mM and 0.04 mM, respectively.  相似文献   

15.
The NADH:quinone oxidoreductase (complex I) from Escherichia coli acts as a primary Na+ pump. Expression of a C-terminally truncated version of the hydrophobic NuoL subunit (ND5 homologue) from E. coli complex I resulted in Na+-dependent growth inhibition of the E. coli host cells. Membrane vesicles containing the truncated NuoL subunit (NuoLN) exhibited 2-4-fold higher Na+ uptake activity than control vesicles without NuoLN. Respiratory proton transport into inverted vesicles containing NuoLN decreased upon addition of Na+, but was not affected by K+, indicating a Na+-dependent increase of proton permeability of membranes in the presence of NuoLN. The His-tagged NuoLN protein was solubilized, enriched by affinity chromatography, and reconstituted into proteoliposomes. Reconstituted His6-NuoLN facilitated the uptake of Na+ into the proteoliposomes along a concentration gradient. This Na+ uptake was prevented by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), which acts as inhibitor against Na+/H+ antiporters.  相似文献   

16.
The process of arginine-dependent extreme acid resistance (XAR) is one of several decarboxylase-antiporter systems that protects Escherichia coli and possibly other enteric bacteria from exposure to the strong acid environment of the stomach. Arginine-dependent acid resistance depends on an intracellular proton-utilizing arginine alpha-decarboxylase and a membrane transport protein necessary for delivering arginine to and removing agmatine, its decarboxylation product, from the cytoplasm. The arginine system afforded significant protection to wild-type E. coli cells in our acid shock experiments. The gene coding for the transport protein is identified here as a putative membrane protein of unknown function, YjdE, which we now name adiC. Strains from which this gene is deleted fail to mount arginine-dependent XAR, and they cannot perform coupled transport of arginine and agmatine. Homologues of this gene are found in other bacteria in close proximity to homologues of the arginine decarboxylase in a gene arrangement pattern similar to that in E coli. Evidence for a lysine-dependent XAR system in E. coli is also presented. The protection by lysine, however, is milder than that by arginine.  相似文献   

17.
Melibiose transport of Escherichia coli.   总被引:4,自引:3,他引:1       下载免费PDF全文
K Tanaka  S Niiya    T Tsuchiya 《Journal of bacteriology》1980,141(3):1031-1036
Transport of [3H]melibiose, prepared from [3H]raffinose, was investigated in Escherichia coli. Na+ stimulated the transport of melibiose via the melibiose system, whereas Li+ inhibited it. Kinetic parameters of melibiose transport were determined. The Kt values were 0.57 mM in the absence of Na+ or Li+, 0.27 mM in the presence of 10 mM NaCl, and 0.29 mM in the presence of 10 mM LiCl. The Vmax values were 40 and 46 nmol/min per mg of protein in the absence and in the presence of NaCl and 18 nmol/min per mg of protein in the presence of LiCl. Melibiose transport via the melibiose system was temperature sensitive in a wild-type strain of Escherichia coli and was not inhibited by lactose. On the other hand, melibiose uptake via the lactose system was not temperature sensitive, was inhibited by lactose, and was not affected by Na+ and Li+. Methyl-beta-D-thiogalactoside, a substrate for both systems, inhibited the transport of melibiose via both systems.  相似文献   

18.
Citrate transport in Klebsiella pneumoniae   总被引:5,自引:0,他引:5  
Sodium ions were specifically required for citrate degradation by suspensions of K. pneumoniae cells which had been grown anaerobically on citrate. The rate of citrate degradation was considerably lower than the activities of the citrate fermentation enzymes citrate lyase and oxaloacetate decarboxylase, indicating that citrate transport is rate limiting. Uptake of citrate into cells was also Na+ -dependent and was accompanied by its rapid metabolism so that the tricarboxylic acid was not accumulated in the cells to significant levels. The transport could be stimulated less efficiently by LiCl. Li+ ions were cotransported with citrate into the cells. Transport and degradation of citrate were abolished with the uncoupler [4-(trifluoromethoxy)phenylhydrazono]propanedinitrile (CCFP). After releasing outer membrane components and periplasmic binding proteins by cold osmotic shock treatment, citrate degradation became also sensitive towards monensin and valinomycin. The shock procedure had no effect on the rate of citrate degradation indicating that the transport is not dependent on a binding protein. Citrate degradation and transport were independent of Na+ ions in K. pneumoniae grown aerobically on citrate and in E. coli grown anaerobically on citrate plus glucose. An E. coli cit+ clone obtained by transformation of K. pneumoniae genes coding for citrate transport required Na specifically for aerobic growth on citrate indicating that the Na-dependent citrate transport system is operating. Na+ and Li+ were equally effective in stimulating citrate degradation by cell suspensions of E. coli cit+. Citrate transport in membrane vesicles of E. coli cit+ was also Na+ dependent and was energized by the proton motive force (delta micro H+). Dissipation of delta micro H+ or its components delta pH or delta psi by ionophores either totally abolished or greatly inhibited citrate uptake. It is suggested that the systems energizing citrate transport under anaerobic conditions are provided by the outwardly directed cotransport of metabolic endproducts with protons yielding delta pH and by the decarboxylation of oxaloacetate yielding delta pNa+ and delta psi. In citrate-fermenting K. pneumoniae an ATPase which is activated by Na+ was not found. The cells contain however a proton translocating ATPase and a Na+/H+ antiporter in their membrane.  相似文献   

19.
Amino acid transport was studied in two lines of chickens, one high and the other low uptake, selected for their ability to transport leucine into erythrocytes. On the basis of the number of mol of substrate transferred, medium Na+ was found to be more effective in stimulating glycine and lysine transport into high line cells than into low line cells. Glycine transport in both lines was stimulated by medium Na+ to a greater degree than was lysine transport. In the absence of medium Na+, glycine transport was not significantly different in the two lines. In the absence of medium Na+, lysine transport in the high line was about five-fold greater than in the low line. The transport differences between the lines are probably due to differences in several distinct genetic determinants.  相似文献   

20.
Cell membrane depolarization induced by intraluminal injection of lysine was entirely independent of the presence of Na+ in Triturus proximal tubule, confirming our previous observation. The amplitude of the depolarization conformed to Michaelis-Menten kinetics regardless of the presence or absence of Na+ in the perfusion solutions. pH of the intraluminal solution had no effect on the electrical response in its range from 5.5 to 8.5. In a Na(+)-free medium, particularly in a Tris-substituted medium, the depolarization induced by a constant concentration of lysine gradually decreased in its size when injection followed by washout of lysine was repetitively tested. The addition of Na+ to the peritubular side after extinction of the responsiveness resulted in a significant restoration of the voltage response to intraluminal lysine. In addition, influx of Na+ from the peritubular fluid into the cells was significantly greater in lysine-loaded tubules than in nonloaded tubules as indicated by a greater rate of increase in intracellular Na+ activity in the presence of ouabain. The data strongly suggest that lysine enters the cells via an electrogenic uniport mechanism and leaves the cells via Na+:amino acid exchange transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号