首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, evidence has emerged that seven transmembrane G protein-coupled receptors may be present as homo- and heteromers in the plasma membrane. Here we describe a new molecular and functional interaction between two functionally unrelated types of G protein-coupled receptors, namely the metabotropic glutamate type 1alpha (mGlu(1alpha) receptor) and the adenosine A1 receptors in cerebellum, primary cortical neurons, and heterologous transfected cells. Co-immunoprecipitation experiments showed a close and subtype-specific interaction between mGlu(1alpha) and A1 receptors in both rat cerebellar synaptosomes and co-transfected HEK-293 cells. By using transiently transfected HEK-293 cells a synergy between mGlu(1alpha) and A1 receptors in receptor-evoked [Ca(2+)](i) signaling has been shown. In primary cultures of cortical neurons we observed a high degree of co-localization of the two receptors, and excitotoxicity experiments in these cultures also indicate that mGlu(1alpha) and A1 receptors are functionally related. Our results provide a molecular basis for adenosine/glutamate receptors cross-talk and open new perspectives for the development of novel agents to treat neuropsychiatric disorders in which abnormal glutamatergic neurotransmission is involved.  相似文献   

2.
Recent evidence suggest that many G protein-coupled receptors (GPCR) and signalling molecules localize in microdomains of the plasma membrane. In this study, flotation gradient analysis in the absence of detergents demonstrated the presence of the metabotropic glutamate receptor type 1alpha (mGlu1alpha) in low-density caveolin-enriched membrane fractions (CEMF) in permanently transfected BHK cells. BHK-1alpha cells exhibit a similar pattern of staining for caveolin-1 and caveolin-2, and these two proteins show a high degree of co-localization with mGlu1alpha receptor as demonstrated by immunogold and confocal laser microscopy. The presence of mGlu1alpha in CEMF was also demonstrated by co-immunoprecipitation of mGlu1alpha receptor using antibodies against caveolin proteins. Activation of the mGlu1alpha receptor by agonist increased extracellular signal-regulated kinases phosphorylation in CEMF and not in high-density membrane fractions (HDMF), suggesting that mGlu1alpha receptor-mediated signal transduction could occur in caveolae-like domains. Overall, these results clearly show a molecular and functional association of mGlu1alpha receptor with caveolins.  相似文献   

3.
In this paper, a molecular and functional interaction between metabotropic glutamate receptor type 1alpha (mGlu1alpha receptor) and caveolin-1 or caveolin-2beta is described. An overlapping pattern of staining for mGlu1alpha receptor with caveolin-1 and caveolin-2 by confocal laser microscopy in transiently transfected HEK-293 cells is observed. The presence of mGlu1alpha receptor in caveolin-enriched membrane fractions was demonstrated by flotation gradient analysis in the absence of detergents and the interaction between mGlu1alpha receptor with caveolin-1 and with caveolin-2beta was demonstrated by coimmunoprecipitation experiments. In HEK-293 cells, caveolin-2beta accumulates surrounding lipid droplets when single expressed but coexpression with mGlu1alpha receptor changed dramatically the subcellular localization of caveolin-2beta, directing it from lipid droplets to the cell surface. At the membrane level, the interaction between caveolin-1 and mGlu1alpha receptor could abrogate the constitutive activity exhibited by mGlu1alpha receptor. Overall, these results show that mGlu1alpha receptor interacts with caveolins and that this interaction is physiologically relevant for receptor function. Interestingly, we provide evidence that caveolin-1 is not just acting as a scaffolding protein for the mGlu1alpha receptor but that also regulates mGlu1alpha receptor constitutive activity.  相似文献   

4.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   

5.
Metabotropic glutamate receptor 1 (mGlu1) is a G protein-coupled receptor that enhances the hydrolysis of membrane phosphoinositides. In addition to its role in synaptic transmission and plasticity, mGlu1 has been shown to be involved in neuroprotection and neurodegeneration. In this capacity, we have reported previously that in neuronal cells, mGlu1a exhibits the properties of a dependence receptor, inducing apoptosis in the absence of glutamate, while promoting neuronal survival in its presence (Pshenichkin, S., Dolińska, M., Klauzińska, M., Luchenko, V., Grajkowska, E., and Wroblewski, J. T. (2008) Neuropharmacology 55, 500–508). Here, using CHO cells expressing mGlu1a receptors, we show that the protective effect of glutamate does not rely on the classical mGlu1 signal transduction. Instead, mGlu1a protective signaling is mediated by a novel, G protein-independent, pathway which involves the activation of the MAPK pathway and a sustained phosphorylation of ERK, which is distinct from the G protein-mediated transient ERK phosphorylation. Moreover, the sustained phosphorylation of ERK and protective signaling through mGlu1a receptors require expression of β-arrestin-1, suggesting a possible role for receptor internalization in this process. Our data reveal the existence of a novel, noncanonical signaling pathway associated with mGlu1a receptors, which mediates glutamate-induced protective signaling.  相似文献   

6.
7.
Chronic R-N(6)-phenylisopropiladenosine (R-PIA) subcutaneous injection for 6 days significantly increased total glutamate receptor number (180% of control) in rat brain synaptic plasma membranes (SPM), without affecting receptor affinity. A higher increase in metabotropic glutamate (mGlu) receptor number (258% of control) was also detected, indicating that mGlu is the main type of glutamate receptor affected by this treatment. On the other hand, the observed increase in basal and calcium- and Gpp(NH)p-stimulated phospholipase C (PLC) activity after treatment was associated with a significant increase in PLC beta(1) isoform, detected in SPM by immunoblotting assays. Moreover, an increase in PLC activity stimulation with trans-ACPD, in the absence and in the presence of Gpp(NH)p, was detected after R-PIA treatment. These results show that mGlu receptors and its effector system, PLC activity, are up-regulated by chronic exposure to an adenosine A(1) receptor agonist and suggest the existence of a cross-talk mechanism between both signal transduction pathways in rat brain.  相似文献   

8.
Inducible expression of the group-I metabotropic glutamate receptor (mGlu1alpha) in Chinese hamster ovary cells allows for the study of receptor density dependent effects. However, expression levels attainable with this system are lower than those reported for various brain regions and achieved by conventional (constitutive) transfection. Thus, direct comparison of mGlu1alpha receptor-mediated responses in this inducible expression system with those for receptors expressed heterologously or in vivo is compounded. We show here that inducible expression can be selectively augmented by butyrate pretreatment to levels approaching those reported for cerebral tissue. Enhanced mGlu1alpha receptor protein levels, agonist-induced inositol phosphate accumulation, as well as single-cell inositol 1,4,5-trisphosphate production and intracellular Ca(2+) mobilization occurred following co-induction with butyrate. In contrast, endogenous purinoceptor function was unaffected. Importantly, the ability to titrate receptor expression by varying isopropyl beta-thiogalactoside concentration was retained. Sodium butyrate thus offers a simple and convenient method to enhance inducible gene expression to levels found in vivo.  相似文献   

9.
Pancreatic islets contain ionotropic glutamate receptors that can modulate hormone secretion. The purpose of this study was to determine whether islets express functional group III metabotropic glutamate (mGlu) receptors. RT-PCR analysis showed that rat islets express the mGlu8 receptor subtype. mGlu8 receptor immunoreactivity was primarily displayed by glucagon-secreting alpha-cells and intrapancreatic neurons. By demonstrating the immunoreactivities of both glutamate and the vesicular glutamate transporter 2 (VGLUT2) in these cells, we established that alpha-cells express a glutamatergic phenotype. VGLUT2 was concentrated in the secretory granules of islet cells, suggesting that glutamate might play a role in the regulation of glucagon processing. The expression of mGlu8 by glutamatergic cells also suggests that mGlu8 may function as an autoreceptor to regulate glutamate release. Pancreatic group III mGlu receptors are functional because mGlu8 receptor agonists inhibited glucagon release and forskolin-induced accumulation of cAMP in isolated islets, and (R,S)-cyclopropyl-4-phosphonophenylglycine, a group III mGlu receptor antagonist, reduced these effects. Because excess glucagon secretion causes postprandial hyperglycemia in patients with type 2 diabetes, group III mGlu receptor agonists could be of value in the treatment of these patients.  相似文献   

10.
11.
Seebahn A  Rose M  Enz R 《FEBS letters》2008,582(16):2453-2457
In the central nervous system, synaptic signal transduction depends on the regulation of neurotransmitter receptors by interacting proteins. Here, we searched for proteins interacting with two metabotropic glutamate receptor type 8 isoforms (mGlu8a and mGlu8b) and identified RanBPM. RanBPM is expressed in several brain regions, including the retina. There, RanBPM is restricted to the inner plexiform layer where it co-localizes with the mGlu8b isoform and processes of cholinergic amacrine cells expressing mGlu2 receptors. RanBPM interacts with mGlu2 and other group II and group III receptors, except mGlu6. Our data suggest that RanBPM might be associated with mGlu receptors at synaptic sites.  相似文献   

12.
Recently we have shown that the metabotropic glutamate 5 (mGlu5) receptor can be expressed on nuclear membranes of heterologous cells or endogenously on striatal neurons where it can mediate nuclear Ca2+ changes. Here, pharmacological, optical, and genetic techniques were used to show that upon activation, nuclear mGlu5 receptors generate nuclear inositol 1,4,5-trisphosphate (IP3) in situ. Specifically, expression of an mGlu5 F767S mutant in HEK293 cells that blocks Gq/11 coupling or introduction of a dominant negative Galphaq construct in striatal neurons prevented nuclear Ca2+ changes following receptor activation. These data indicate that nuclear mGlu5 receptors couple to Gq/11 to mobilize nuclear Ca2+. Nuclear mGlu5-mediated Ca2+ responses could also be blocked by the phospholipase C (PLC) inhibitor, U73122, the phosphatidylinositol (PI) PLC inhibitor 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH3), or by using small interfering RNA targeted against PLCbeta1 demonstrating that PI-PLC is involved. Direct assessment of inositol phosphate production using a PIP2/IP3 "biosensor" revealed for the first time that IP3 can be generated in the nucleus following activation of nuclear mGlu5 receptors. Finally, both IP3 and ryanodine receptor blockers prevented nuclear mGlu5-mediated increases in intranuclear Ca2+. Collectively, this study shows that like plasma membrane receptors, activated nuclear mGlu5 receptors couple to Gq/11 and PLC to generate IP3-mediated release of Ca2+ from Ca2+-release channels in the nucleus. Thus the nucleus can function as an autonomous organelle independent of signals originating in the cytoplasm, and nuclear mGlu5 receptors play a dynamic role in mobilizing Ca2+ in a specific, localized fashion.  相似文献   

13.
Agonist stimulation causes tubulin association with the plasma membrane and activation of PLC beta 1 through direct interaction with, and transactivation of, G alpha q. Here we demonstrate that G beta gamma interaction with tubulin down-regulates this signaling pathway. Purified G beta gamma, alone or with phosphatidylinositol 4,5-bisphosphate (PIP2), inhibited carbachol-evoked membrane recruitment of tubulin and G alpha q transactivation by tubulin. Polymerization of microtubules elicited by G beta gamma overrode tubulin translocation to the membrane in response to carbachol stimulation. G beta gamma sequestration of tubulin reduced the inhibition of PLC beta 1 observed at high tubulin concentration. G beta 1 gamma 2 interacted preferentially with tubulin-GDP, whereas G alpha q was transactivated by tubulin-GTP. Prenylation of the gamma 2 polypeptide was required for G beta gamma/tubulin interaction. Both confocal microscopy and coimmunoprecipitation studies revealed the spatiotemporal pattern of G beta gamma/tubulin interaction during carbachol stimulation of neuroblastoma SK-N-SH cells. In resting cells G beta gamma localized predominantly at the cell membrane, whereas tubulin was found in well defined microtubules in the cytosol. Within 2 min of agonist exposure, a subset of tubulin translocated to the plasma membrane and colocalized with G beta. Fifteen min post-carbachol addition, tubulin and G beta colocalized in vesicle-like structures in the cytosol. G beta/tubulin colocalization increased after pretreatment of cells with the microtubule-depolymerizing agent, colchicine, and was inhibited by taxol. Taxol also inhibited carbachol-induced PIP2 hydrolysis. It is suggested that G beta gamma/tubulin interaction mediates internalization of membrane-associated tubulin at the offset of PLC beta 1 signaling. Newly cytosolic G beta gamma/tubulin complexes might promote microtubule polymerization attenuating further tubulin association with the plasma membrane. Thus G protein-coupled receptors might evoke G alpha and G beta gamma to orchestrate regulation of phospholipase signaling by tubulin dimers and control of cell shape by microtubules.  相似文献   

14.
G-protein-coupled receptor kinases (GRKs) are involved in the regulation of many G-protein-coupled receptors. As opposed to the other GRKs, such as rhodopsin kinase (GRK1) or beta-adrenergic receptor kinase (beta ARK, GRK2), no receptor substrate for GRK4 has been so far identified. Here we show that GRK4 is expressed in cerebellar Purkinje cells, where it regulates mGlu(1) metabotropic glutamate receptors, as indicated by the following: 1) When coexpressed in heterologous cells (HEK293), mGlu(1) receptor signaling was desensitized by GRK4 in an agonist-dependent manner (homologous desensitization). 2) In transfected HEK293 and in cultured Purkinje cells, the exposure to glutamate agonists induced internalization of the receptor and redistribution of GRK4. There was a substantial colocalization of the receptor and kinase both under basal condition and after internalization. 3) Kinase activity was necessary for desensitizing mGlu(1a) receptor and agonist-dependent phosphorylation of this receptor was also documented. 4) Antisense treatment of cultured Purkinje cells, which significantly reduced the levels of GRK4 expression, induced a marked modification of the mGlu(1)-mediated functional response, consistent with an impaired receptor desensitization. The critical role for GRK4 in regulating mGlu(1) receptors implicates a major involvement of this kinase in the physiology of Purkinje cell and in motor learning.  相似文献   

15.
Interaction between metabotropic glutamate receptor 7 and alpha tubulin   总被引:1,自引:0,他引:1  
Metabotropic glutamate receptors (mGluRs) mediate a variety of responses to glutamate in the central nervous system. A primary role for group-III mGluRs is to inhibit neurotransmitter release from presynaptic terminals, but the molecular mechanisms that regulate presynaptic trafficking and activity of group-III mGluRs are not well understood. Here, we describe the interaction of mGluR7, a group-III mGluR and presynaptic autoreceptor, with the cytoskeletal protein, alpha tubulin. The mGluR7 carboxy terminal (CT) region was expressed as a GST fusion protein and incubated with rat brain extract to purify potential mGluR7-interacting proteins. These studies yielded a single prominent mGluR7 CT-associated protein of 55 kDa, which subsequent microsequencing analysis revealed to be alpha tubulin. Coimmunoprecipitation assays confirmed that full-length mGluR7 and alpha tubulin interact in rat brain as well as in BHK cells stably expressing mGluR7a, a splice variant of mGluR7. In addition, protein overlay experiments showed that the CT domain of mGluR7a binds specifically to purified tubulin and calmodulin, but not to bovine serum albumin. Further pull-down studies revealed that another splice variant mGluR7b also interacts with alpha tubulin, indicating that the binding region is not localized to the splice-variant regions of either mGluR7a (900-915) or mGluR7b (900-923). Indeed, deletion mutagenesis experiments revealed that the alpha tubulin-binding site is located within amino acids 873-892 of the mGluR7 CT domain, a region known to be important for regulation of mGluR7 trafficking. Interestingly, activation of mGluR7a in cells results in an immediate and significant decrease in alpha tubulin binding. These data suggest that the mGluR7/alpha tubulin interaction may provide a mechanism to control access of the CT domain to regulatory molecules, or alternatively, that this interaction may lead to morphological changes in the presynaptic membrane in response to receptor activation.  相似文献   

16.
To investigate the role of the intracellular C-terminal tail of the rat metabotropic glutamate receptor 1a (mGlu1a) in receptor regulation, we constructed three C-terminal tail deletion mutants (Arg847stop, DM-I; Arg868stop, DM-II; Val893stop, DM-III). Quantification of glutamate-induced internalization provided by ELISA indicated that DM-III, like the wild-type mGlu1a, underwent rapid internalization whilst internalization of DM-I and DM-II was impaired. The selective inhibitor of protein kinase C (PKC), GF109203X, which significantly reduced glutamate-induced mGlu1a internalization, had no effect on the internalization of DM-I, DM-II, or DM-III. In addition activation by carbachol of endogenously expressed M1 muscarinic acetylcholine receptors, which induces PKC- and Ca2+-calmodulin-dependent protein kinase II-dependent internalization of mGlu1a, produced negligible internalization of the deletion mutants. Co-expression of a dominant negative mutant form of G protein-coupled receptor kinase 2 (DNM-GRK2; Lys220Arg) significantly attenuated glutamate-induced internalization of mGlu1a and DM-III, whilst internalization of DM-I and DM-II was not significantly affected. The glutamate-induced internalization of mGlu1a and DM-III, but not of DM-I or DM-II, was inhibited by expression of DNM-arrestin [arrestin-2(319-418)]. In addition glutamate-induced rapid translocation of arrestin-2-Green Fluorescent Protein (arr-2-GFP) from cytosol to membrane was only observed in cells expressing mGlu1a or DM-III. Functionally, in cells expressing mGlu1a, glutamate-stimulated inositol phosphate accumulation was increased in the presence of PKC inhibition, but so too was that in cells expressing DM-II and DM-III. Together these results indicate that different PKC mechanisms regulate the desensitization and internalization of mGlu1a. Furthermore, PKC regulation of mGlu1a internalization requires the distal C terminus of the receptor (Ser894-Leu1199), whilst in contrast glutamate-stimulated GRK- and arrestin-dependent regulation of this receptor depends on a region of 25 amino acids (Ser869-Val893) in the proximal C-terminal tail.  相似文献   

17.
Summary. Numerous pharmacological data indicate involvement of glutamate, the major excitatory neurotransmitter in the brain, in the pathophysiology of several neuropsychiatric disorders. It was shown in the preclinical studies that compounds which can reduce the excess of glutamate release (for example group III metabotropic receptors agonists) possess potential therapeutic properties. Thus we focused our interests on (−)-N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide (PHCCC), which is a positive allosteric modulator of mGlu4 receptor. We examined the potential antidepressant-like activity of PHCCC after injection into the brain ventricles alone, or together with (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid (ACPT-I), a nonselective group III mGlu receptor agonist, using the forced swimming test (FST) in rats. We found that ACPT-I induced a dose dependent antidepressant-like effect in FST, which was blocked by an antagonist of group III mGlu receptors (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG). PHCCC injected intracerebroventricular was not effective, however when the compound was administered together with non-effective dose of ACPT-I, a profound antidepressant-like activity in FST was demonstrated. This effect was reversed by CPPG, group III mGlu receptors antagonist. Results of our studies indicate that a combined administration positive allosteric modulation of mGlu4 receptor and agonists of group III mGlu receptors may be a promising target in the future treatment of depressive disorder.  相似文献   

18.
Mouse embryonic stem (ES) cells were stimulated to differentiate either as adherent monolayer cultures in DMEM/F12 supplemented with N2/B27, or as floating embryoid bodies (EBs) exposed to 1 microM retinoic acid (RA) for 4 days, starting from 4 DIV, and subsequently re-plated in DMEM/F12 medium. Adherent monolayer cultures of ES cells expressed mGlu5 receptors throughout the entire differentiation period. Selective pharmacological blockade of mGlu5 receptors with methyl-6-(phenylethynyl)-pyridine (MPEP) (1 microM, added once a day) accelerated the appearance of the neuronal marker, beta-tubulin. In addition, treatment with MPEP increased the number of cells expressing glutamate decarboxylase-65/67 (GAD(65/67)), a marker of GABAergic neurons. In floating EBs, mGlu5 receptors are progressively replaced by mGlu4 receptors. The orthosteric mGlu4/6/7/8 receptor agonist, L-2-amino-4-phosphonobutanoate (L-AP4), or the selective mGlu4 receptor enhancer, PHCCC,--both combined with RA at concentrations of 30 microM--increased the expression of both beta-tubulin and GAD(65/67), inducing the appearance of fully differentiated neurons that released GABA in response to membrane depolarization. We conclude that mGlu receptor subtypes regulate neuronal differentiation of ES cells in a context-dependent manner, and that subtype-selective ligands of these receptors might be used for the optimization of in vitro protocols aimed at producing GABAergic neurons from ES cells.  相似文献   

19.
The regulation of pre-synaptic glutamate release is important in the maintenance and fidelity of excitatory transmission in the nervous system. In this study, we report a novel interaction between a ligand-gated ion channel and a G-protein coupled receptor which regulates glutamate release from parallel fiber axon terminals. Immunocytochemical analysis revealed that GABA(A) receptors and the high affinity group III metabotropic glutamate receptor subtype 4 (mGlu4) are co-localized on glutamatergic parallel fiber axon terminals in the cerebellum. GABA(A) and mGlu4 receptors were also found to co-immunoprecipitate from cerebellar membranes. Independently, these two receptors have opposing roles on glutamate release: pre-synaptic GABA(A) receptors promote, while mGlu4 receptors inhibit, glutamate release. However, coincident activation of GABA(A) receptors with muscimol and mGlu4 with the agonist (2S)-S-2-amino-4-phosphonobutanoic acid , increased glutamate release from [(3) H]glutamate-loaded cerebellar synaptosomes above that observed with muscimol alone. Further support for an interaction between GABA(A) and mGlu4 receptors was obtained in the mGlu4 knockout mouse which displayed reduced binding of the GABA(A) ligand [(35) S]tert-butylbicyclophosphorothionate, and decreased expression of the α1, α6, β2 GABA(A) receptor subunits in the cerebellum. Taken together, our data suggest a new role for mGlu4 whereby simultaneous activation with GABA(A) receptors acts to amplify glutamate release at parallel fiber-Purkinje cell synapses.  相似文献   

20.
Functional interplay between ionotropic and metabotropic receptors frequently involves complex intracellular signaling cascades. The group I metabotropic glutamate receptor mGlu5a co-clusters with the ionotropic N-methyl-d-aspartate (NMDA) receptor in hippocampal neurons. In this study, we report that a more direct cross-talk can exist between these types of receptors. Using bioluminescence resonance energy transfer in living HEK293 cells, we demonstrate that mGlu5a and NMDA receptor clustering reflects the existence of direct physical interactions. Consequently, the mGlu5a receptor decreased NMDA receptor current, and reciprocally, the NMDA receptor strongly reduced the ability of the mGlu5a receptor to release intracellular calcium. We show that deletion of the C terminus of the mGlu5a receptor abolished both its interaction with the NMDA receptor and reciprocal inhibition of the receptors. This direct functional interaction implies a higher degree of target-effector specificity, timing, and subcellular localization of signaling than could ever be predicted with complex signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号