首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stripe or yellow rust caused by Puccinia striiformis f. sp. tritici is a threat to many of the existing cultivars of Pakistan. Many attempts are being made to evolve new varieties resistant to stripe rust to reduce the losses caused by this disease. For this purpose, novel genes are needed to incorporate into the existing cultivars. These genes are found in the wild progenitors of wheat that are D-genome donors to wheat. As a result of extensive research, wheat synthetic hexaploids have been developed. These synthetics have resistances against biotic as well as abiotic stresses including the yellow rust. A group of such synthetics has been identified which seems resistant to this destructive disease. This group was tested under field conditions to identify resistance against stripe rust. The same population was analysed at molecular level to explore the genetic diversity for rust resistance. Genetic diversity among 34 selected synthetic hexaploid wheats was studied by random amplified polymorphic DNA (RAPD) analysis. A set of 12 RAPD primers was applied, and the level of polymorphism was found to be 46.67%. The coefficients in the range of 71–100% were detected by genetic similarity matrix based on Nei and Li's index. These coefficients were used for constructing a dendrogram using unweighted pair group of arithmetic means. Synthetic hexaploid line 34 was found to exhibit maximum genetic distances among the 34 selected lines. The same accession also showed excellent phenotypic characters with above average grain weight. These synthetic hexaploids carrying genetic potential for stripe rust resistance and morphological traits should be useful for improvement of existing wheat cultivars.  相似文献   

2.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

3.
Wheat production in Pakistan is seriously constrained due to rust diseases and stripe rust (yellow) caused by Puccinia striiformis f. sp. tritici, which could limit yields. Thus development and cultivation of genetically diverse and resistant varieties is the most sustainable solution to overcome these diseases. The first objective of the present study was to evaluate 100 Pakistan wheat cultivars that have been grown over the past 60 years. These cultivars were inoculated at the seedling stage with two virulent stripe rust isolates from the United States and two from Pakistan. None of the wheat cultivars were resistant to all tested stripe rust isolates, and 16% of cultivars were susceptible to the four isolates at the seedling stage. The data indicated that none of the Pakistan wheat cultivars contained either Yr5 or Yr15 genes that were considered to be effective against most P. striiformis f. sp. tritici isolates from around the world. Several Pakistan wheat cultivars may have gene Yr10, which is effective against isolate PST-127 but ineffective against PST-116. It is also possible that these cultivars may have other previously unidentified genes or gene combinations. The second objective was to evaluate the 100 Pakistan wheat cultivars for stripe rust resistance during natural epidemics in Pakistan and Washington State, USA. It was found that a higher frequency of resistance was present under field conditions compared with greenhouse conditions. Thirty genotypes (30% of germplasms) were found to have a potentially high temperature adult plant (HTAP) resistance. The third objective was to determine the genetic diversity in Pakistan wheat germplasms using molecular markers. This study was based on DNA fingerprinting using resistance gene analog polymorphism (RGAP) marker analysis. The highest polymorphism detected with RGAP primer pairs was 40%, 50% and 57% with a mean polymorphism of 36%. A total of 22 RGAP markers were obtained in this study. RGAP, simple sequence repeat (SSR) and sequence tagged site (STS) markers were used to determine the presence and absence of some important stripe rust resistance genes, such as Yr5, Yr8, Yr9, Yr15 and Yr18. Of the 60 cultivars analyzed, 17% of cultivars showed a RGAP marker band for Yr9 and 12% of cultivars exhibited the Yr18 marker band. No marker band was detected for Yr5, Yr8 and Yr15, indicating a likely absence of these genes in the tested Pakistan wheat cultivars. Cluster analysis based on molecular and stripe rust reaction data is useful in identifying considerable genetic diversity among Pakistan wheat cultivars. The resistant germplasms identified with 22 RGAP markers and from the resistance evaluations should be useful in developing new wheat cultivars with stripe rust resistance.  相似文献   

4.
Studies were conducted to quantify the yield loss attributable to soya bean rust, a relatively new disease in Uganda. This was carried out for three consecutive seasons in the central, eastern, northern and western parts of the country, using three commercial varieties (Nam 1, Nam 2 and Namsoy 3) and two elite varieties (UG‐5 and GC‐00138‐29). The commercial varieties recorded higher yield losses (26.9–36.3%) and higher rust severities >50%, whereas the elite varieties recorded lesser yield losses of <10% and rust severities of <30%. Yield losses were highest in the central region (22.9%), and lowest in the northern region (15.1%). Yield losses differed significantly between seasons and were associated with reduction in seed weight and filled pod per plant.  相似文献   

5.
Wheat (Triticum aestivum L.) stem rust caused by Puccinia graminis f. sp. tritici is one of the main diseases of wheat worldwide. Wheat mutant line D51, which was derived from the highly susceptible cultivar L6239, shows resistance to the prevailing races 21C3CPH, 21C3CKH, and 21C3CTR of P. graminis f. sp. tritici in China. In this study, we used the cDNA-AFLP technology to identify the genes that are likely involved in the stem rust resistance. EcoRI/MseI selective primers were used to generate approximately 1920 DNA fragments. Seventy five differentially transcribed fragments (3.91%) were identified by comparing the samples of 21C3CPH infected D51 with infected L6239 or uninfected D51. Eleven amplified cDNA fragments were sequenced. Eight showed significant similarity to known genes, including TaLr1 (leaf rust resistance gene), wlm24 (wheat powdery mildew resistance gene), stress response genes and ESTs of environment stress of tall fescue. These identified genes are involved in plant defense response and stem rust resistance and need further research to determine their usefulness in breeding new resistance cultivars.  相似文献   

6.
孔令让 《植物学报》2022,57(4):405-408
小麦条锈病是由条形柄锈菌小麦专化型(Puccinia striiformis f. sp. tritici, Pst)引起的真菌病害,在全世界范围内危害小麦(Triticumaestivum)生产。培育和种植持久抗性小麦品种是控制小麦条锈病最有效的方法。由于病原体突变导致免疫受体逃避检测,因此抗病基因经常失效。而易感基因(S基因)突变介导的抗性常具持久性与广谱性。近日,西北农林科技大学植物免疫研究团队在揭示小麦受S基因保护的分子机制方面取得显著进展,为抗病育种提供了有力工具。他们发现小麦感染条锈菌后,真菌诱导受体样细胞质激酶TaPsIPK1与效应子PsSpg1特异性互作,通过增强激酶活性和TaPsIPK1进入细胞核促进寄生。TaPsIPK1磷酸化转录因子TaCBF1d。TaCBF1d的磷酸化改变了其下游基因的转录活性。因此, TaPsIPK1和PsSpg1增强TaCBF1d磷酸化可能会重新编程靶基因表达,干扰植物防御反应,从而促进病原体感染。在2年的田间试验中,小麦中TaPsIPK1的CRISPR-Cas9失活赋予了对Pst的广谱抗性,且不影响重要的农艺性状。该研究首次揭示了由PsSp...  相似文献   

7.
Coffee leaf rust due to Hemileia vastatrix is one of the most serious diseases in Arabica coffee (Coffea arabica). A resistance gene (SH3) has been transferred from C. liberica into C. arabica. The present work aimed at developing sequence-characterized genetic markers for leaf rust resistance. Linkage between markers and leaf rust resistance was tested by analysing two segregating populations, one F2 population of 101 individuals and one backcross (BC2) population of 43 individuals, derived from a cross between a susceptible and a SH3-introgressed resistant genotype. A total of ten sequence-characterized genetic markers closely associated with the SH3 leaf rust resistance gene were generated. These included simple sequence repeats (SSR) markers, sequence-characterised amplified regions (SCAR) markers resulting from the conversion of amplified fragment length polymorphism (AFLP) markers previously identified and SCAR markers derived from end-sequences of bacterial artificial chromosome (BAC) clones. Those BAC clones were identified by screening of C. arabica genomic BAC library using a cloned AFLP-marker as probe. The markers we developed are easy and inexpensive to run, requiring one PCR step followed by gel separation. While three markers were linked in repulsion with the SH3 gene, seven markers were clustered in coupling around the SH3 gene. Notably, two markers appeared to co-segregate perfectly with the SH3 gene in the two plant populations analyzed. These markers are suitable for marker-assisted selection for leaf rust resistance and to facilitate pyramiding of the SH3 gene with other leaf rust resistance genes.  相似文献   

8.
抗条锈病小麦品种9365在抗病育种中的利用与评价   总被引:1,自引:0,他引:1  
9365是陕西省小麦研究中心创制的抗条锈病小麦品种.经多年观察、利用发现,9365对条锈病表现高抗,其穗大、成穗率高、落黄好、高产、综合农艺性状好,是陕西省小麦抗条锈病育种可资利用的抗条锈小麦品种.其缺点是植株偏高、成熟偏晚、抗性受隐性基因控制.  相似文献   

9.
1994 - 2002年小麦品种(系)抗条锈性鉴定与监测   总被引:10,自引:0,他引:10  
1994—2002年经对3822份小麦品种(系)材料抗条锈性鉴定结果表明,冬小麦抗条锈性优于春小麦,甘肃品种抗条锈性优于国内其它省区品种。田间抗条锈性监测结果表明,我国主要生产品种均表现感病,甘肃主要生产品种仅陇鉴127等少数几个品种抗病,抗源材料中也仅有中四等少数品种表现抗病,结合抗病性鉴定、监测结果及田间综合农艺性状观察,筛选出20余份可供育种利用的抗源材料。同时在针对今后抗条中31、32号等主要小种类型的抗病育种、抗病性监测等方面进行了讨论。  相似文献   

10.
Wheat stripe rust is a devastating disease in many regions of the world. In wheat, 49 resistance genes for stripe rust have been officially documented, but only three genes are cloned, including the race-specific resistance Yr10 candidate gene (Yr10CG) and slow-rusting genes Lr34/Yr18 (hereafter designated as Yr18) and Yr36. In this study, we developed gene-specific markers for these genes and used them to screen a collection of 659 wheat accessions, including 485 Chinese cultivars. Thirteen percent and eleven percent of the tested Chinese cultivars were positive for the markers for Yr10CG and Yr18RH (the resistant haplotype of Yr18), respectively, but none were positive for the Yr36 marker. Since there is a limited use of the Yr10 gene in Chinese wheat, the relatively high frequency of wheat varieties with the Yr10CG marker suggests that the identity of the Yr10 gene is unknown. With regards to the Yr18 gene, 29% of the tested cultivars that are used in the Middle and Lower Yangtze Valleys' winter wheat zone were positive for Yr18RH markers. A non-functional allele of Yr18RH was identified in ‘Mingxian 169’, a commonly used susceptible check for studying stripe rust. The data presented here will provide useful information for marker-assisted selection for wheat stripe rust resistance.  相似文献   

11.
Wheat leaf rust (Puccinia triticina) is becoming a serious concern in Spanish wheat, especially on durum wheat where acreage has enormously increased. Host resistance is the preferred method of disease control, but the virulence spectrum of the leaf rust population in Spain is currently unknown. In order to deploy effective Lr genes, this study was conducted to characterize the virulence spectrum of leaf rust in Andalusia (Spain). Isolates were obtained from surveys of wheat fields across Andalusia from 1998 to 2000. From 56 isolates phenotyped, 35 pathotypes were identified. Virulence to Lr10, Lr11, Lr14a, Lr14b and Lr18 was high (>96%), while virulence to Lr9 and Lr24 were not found. None of the isolates collected from durum wheat were virulent to Lr1, Lr3, Lr3ka, Lr3bg, Lr15, Lr16 and Lr17, while many of the isolates collected on bread wheat showed virulence on these genes, indicating a certain specialization in the leaf rust infecting durum wheat. Population dynamics of current wheat leaf rust pathotypes in terms of mutation and migration are discussed.  相似文献   

12.
Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f.sp. tritici (PST), is a major disease of wheat in temperate‐cold climates. The identification of new markers would ease the procedure for evaluating the ongoing pathogen evolution. Twelve single pustule isolates were generated from samples of PST obtained in UK during 1987–2001. They were evaluated for their pathogenic behaviour on a set of differential cultivars and were analysed by sequence‐related amplified polymorphisms (SRAP) technique, to identify polymorphisms useful to evaluate variability among isolates. This is the first report of the application of SRAP technique to Uredinales order.  相似文献   

13.
Globally among biotic stresses, diseases like blight, rust and blast constitute prime constraints for reducing wheat productivity especially in Bangladesh. For sustainable productivity, the development of disease-resistant lines and high yielding varieties is vital and necessary. This study was conducted using 122 advanced breeding lines of wheat including 21 varieties developed by Bangladesh Wheat and Maize Research Institute (BAMRI) with aims to identify genotypes having high yield potential and resistance to leaf blight, leaf rust and blast diseases. These genotypes were evaluated for resistance against leaf blight and leaf rust at Dinajpur and wheat blast at Jashore under field condition. Out of 122 genotypes tested, 20 lines were selected as resistant to leaf blight based on the area under the diseases progress curve (AUDPC) under both irrigated timely sown (ITS) and irrigated late sown (ILS) conditions. Forty-two genotypes were found completely free from leaf rust infection, 59 genotypes were identified as resistant, and 13 genotypes were identified as moderately resistant to leaf rust. Eighteen genotypes were immune against wheat blast, 42 genotypes were categorized as resistant, and 26 genotypes were identified as moderately resistant to wheat blast. Molecular data revealed that the 16 genotypes showed a positive 2NS segment among the 18 immune genotypes selected against wheat blast under field conditions. The genotypes BAW 1322, BAW 1295, and BAW 1203 can be used as earlier maturing genotypes and the genotypes BAW 1372, BAW 1373, BAW 1297 and BAW 1364 can be used for lodging tolerant due to short plant height. The genotypes WMRI Gom 1, BAW 1349 and BAW 1350 can be selected for bold grain and the genotypes WMRI Gom 1, BAW 1297, BAW 1377 can be used as high yielder for optimum seeding condition but genotypes BAW 1377 and BAW 1366 can be used for late sown condition. The selected resistant genotypes against specific diseases can be used in the further breeding program to develop wheat varieties having higher disease resistance and yield potential.  相似文献   

14.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

15.
Linkage disequilibrium can be used for identifying associations between traits of interest and genetic markers. This study used mapped diversity array technology (DArT) markers to find associations with resistance to stem rust, leaf rust, yellow rust, and powdery mildew, plus grain yield in five historical wheat international multienvironment trials from the International Maize and Wheat Improvement Center (CIMMYT). Two linear mixed models were used to assess marker-trait associations incorporating information on population structure and covariance between relatives. An integrated map containing 813 DArT markers and 831 other markers was constructed. Several linkage disequilibrium clusters bearing multiple host plant resistance genes were found. Most of the associated markers were found in genomic regions where previous reports had found genes or quantitative trait loci (QTL) influencing the same traits, providing an independent validation of this approach. In addition, many new chromosome regions for disease resistance and grain yield were identified in the wheat genome. Phenotyping across up to 60 environments and years allowed modeling of genotype x environment interaction, thereby making possible the identification of markers contributing to both additive and additive x additive interaction effects of traits.  相似文献   

16.
Phenolic compounds are potential antimicrobial agents in willows ( Salix spp.). However, little is known about their role in willow‐pathogen interactions. Earlier studies have shown that phenolic levels may vary depending on genotype and environmental factors (such as nutrient availability). In the present study, the combined effects of nitrogen fertilization and infection by pathogenic rust ( Melampsora sp.) on phenolics and growth in willow ( salix myrsinifolia ) clones were investigated. Cutting-propagated plants of eight willow clones were subjected to low and optimum levels of nitrogen fertilization and inoculated with rust urediniospores or mock-inoculated with water. The plants were harvested 20 days after the inoculations and the dry weight of the leaves, stems and roots determined. Phenolics were analysed from leaf material using HPLC. The willow clones differed significantly in their phenolic content, rust frequency and phytomass production. Plants under optimum nitrogen availability showed increased shoot phytomass production and reduced root production. Rust infection increased the root phytomass of willow under both fertilization treatments, but had no consistent effect on the shoot growth of the clones. Low nitrogen availability increased the phenolic levels in willow leaves, but the rust frequency did not differ significantly between plants grown at low and optimum levels of nitrogen fertilization. In several clones, rust infection increased the concentrations of individual phenolic compounds, but there were no significant correlations between phenolic concentrations and the level of rust infection. The results indicate that resistance in compatible willow‐rust interactions may not be directly governed by phenolic compounds.  相似文献   

17.
Luo L  Zhang J  Yang G  Li Y  Li K  He G 《Molecular biology reports》2008,35(2):195-200
The purouindoline gene (pin) coding for puroindoline proteins (PINs) is located on chromosome 5D, controls grain hardness, and the PINs have in vitro antimicrobial activity against gram-positive (G+) bacteria, gram-negative (G-) bacteria and fungi. Wheat leaf rust caused by Puccinia triticina is one of the most important fungal diseases for common wheat with AABBDD genomes. Tetraploid wheat (AABB genome) varieties Luna and Venusia were transformed with the purouindoline a (pinA) gene by bombardment, express PINA consititutively. Transgenic plants showed enhanced response to leaf rust in greenhouse and field. Comparative study of harvesting parameters showed significant differences between transgenic and control plants. These indexes were significantly lower (P < 0.05) in control plants than that in transgenic plants, which suggests that they are significantly affected by pinA gene and that the puroindoline a protein (PINA) can effectively inhibit in vivo the growth of fungal, and the transgenic tetraploid wheat can grow well in Hubei Province, Central China, where the tetraploid wheat varieties Luna and Venusia have poor yield due to their disease-sensitivity.  相似文献   

18.
19.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

20.
Wheat is the main cereal crop in Kazakhstan and fertilizers play an important role in enhancing harvest growth. In this study, the impact of new sulfur-containing fertilizers on the growth and yield of wheat was evaluated, and the resistance of varieties to Puccinia triticina Erikss was also investigated. (also known as Puccinia recondite Rob. ex Desm.) for recommendations in agriculture. The study was conducted from 2017 to 2020 in a nursery and greenhouse. The sulfur-containing fertilizer contains nutrients that allow you to extend the duration of absorption by the plant, thereby extending the period of their availability to plants, compared to conventional preparations. By encapsulating molten elemental sulfur and impregnating with a solution of calcium polysulfide, a long-acting compound based on amorphous and monocalcium phosphate was developed. The sulfur is in a water-soluble sulfate form, which, in turn, is slowly oxidized by bacteria and retained in the soil. Three different types of the developed sulfur-containing nano-particle have been used to test in greenhouses and nurseries: powdered, pasty sulfur-containing composition, and a solution of calcium polysulfide. The results showed that the use of powdered and dissolved sulfur-containing fertilizers contributed to the early ripeness and increased productivity of wheat. Wheat varieties were tested for the presence of key Lr genes that determine resistance to brown rust. The Omskaya 29 sample showed an immune response according to phytopathological assessment, and molecular screening revealed four resistance genes. The new sulfur-containing product is recommended for improving wheat productivity in agriculture, and the Omskaya 29 variety can also be used as a valuable breeding material resistant to brown rust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号