共查询到20条相似文献,搜索用时 15 毫秒
1.
Ido K Kakiuchi S Uno C Nishimura T Fukao Y Noguchi T Sato F Ifuku K 《The Journal of biological chemistry》2012,287(31):26377-26387
The PsbP protein regulates the binding properties of Ca(2+) and Cl(-), and stabilizes the Mn cluster of photosystem II (PSII); however, the binding site and topology in PSII have yet to be clarified. Here we report that the structure around His-144 and Asp-165 in PsbP, which is suggested to be a metal binding site, has a crucial role for the functional interaction between PsbP and PSII. The mutated PsbP-H144A protein exhibits reduced ability to retain Cl(-) anions in PSII, whereas the D165V mutation does not affect PsbP function. Interestingly, H144A/D165V double mutation suppresses the effect of H144A mutation, suggesting that these residues have a role other than metal binding. FTIR difference spectroscopy suggests that H144A/D165V restores proper interaction with PSII and induces the conformational change around the Mn cluster during the S(1)/S(2) transition. Cross-linking experiments show that the H144A mutation affects the direct interaction between PsbP and the Cyt b(559) α subunit of PSII (the PsbE protein). However, this interaction is restored in the H144A/D165V mutant. In the PsbP structure, His-144 and Asp-165 form a salt bridge. H144A mutation is likely to disrupt this bridge and liberate Asp-165, inhibiting the proper PsbP-PSII interaction. Finally, mass spectrometric analysis has identified the cross-linked sites of PsbP and PsbE as Ala-1 and Glu-57, respectively. Therefore His-144, in the C-terminal domain of PsbP, plays a crucial role in maintaining proper N terminus interaction. These data provide important information about the binding characteristics of PsbP in green plant PSII. 相似文献
2.
Laurie K. Frankel Larry Sallans Henry Bellamy Jost S. Goettert Patrick A. Limbach Terry M. Bricker 《The Journal of biological chemistry》2013,288(32):23565-23572
Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH• and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II. 相似文献
3.
Johnna L. Roose Laurie K. Frankel Terry M. Bricker 《The Journal of biological chemistry》2014,289(34):23776-23785
Photosystem I (PS I) is a multisubunit membrane protein complex that functions as a light-driven plastocyanin-ferredoxin oxidoreductase. The PsbP domain protein 1 (PPD1; At4g15510) is located in the thylakoid lumen of plant chloroplasts and is essential for photoautotrophy, functioning as a PS I assembly factor. In this work, RNAi was used to suppress PPD1 expression, yielding mutants displaying a range of phenotypes with respect to PS I accumulation and function. These PPD1 RNAi mutants showed a loss of assembled PS I that was correlated with loss of the PPD1 protein. In the most severely affected PPD1 RNAi lines, the accumulated PS I complexes exhibited defects in electron transfer from plastocyanin to the oxidized reaction center P700+. The defects in PS I assembly in the PPD1 RNAi mutants also had secondary effects with respect to the association of light-harvesting antenna complexes to PS I. Because of the imbalance in photosystem function in the PPD1 RNAi mutants, light-harvesting complex II associated with and acted as an antenna for the PS I complexes. These results provide new evidence for the role of PPD1 in PS I biogenesis, particularly as a factor essential for proper assembly of the lumenal portion of the complex. 相似文献
4.
Li L Carrie C Nelson C Whelan J Millar AH 《The Journal of biological chemistry》2012,287(31):25749-25757
F(1) subcomplex in mitochondrial samples is often considered to be a breakage product of the F(1)F(O) ATP synthase during sample handling and electrophoresis. We have used a progressive (15)N incorporation strategy to investigate the plant F(1)F(O) ATP synthase assembly model and the apparently free F(1) in plant mitochondria which is found in both the inner membrane and matrix. We show that subunits within F(1) in the inner membrane and matrix had a relatively higher (15)N incorporation rate than corresponding subunits in intact membrane F(1)F(O). This demonstrates that free F(1) was a newer pool with a faster turnover rate consistent with it being an assembly intermediate in vivo. Import of [(35)S]Met-labeled F(1) subunit precursors into Arabidopsis mitochondria showed the rapid accumulation of F(1) assembly intermediates. The different (15)N incorporation rate in matrix F(1), inner membrane F(1) and intact F(1)F(O) demonstrates these three represent different protein populations and are likely step by step intermediates during the assembly process of plant mitochondrial ATP synthase. The potential biological implications of in vivo accumulation of enzymatically active F(1) in mitochondria are discussed. 相似文献
5.
Kimberly Coffman Bing Yang Jie Lu Ashley L. Tetlow Emelia Pelliccio Shan Lu Da-Chuan Guo Chun Tang Meng-Qiu Dong Fuyuhiko Tamanoi 《The Journal of biological chemistry》2014,289(8):4723-4734
mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56–72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo. 相似文献
6.
The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically found in land plants and green algae. Using PsbP-RNAi tobacco, we have investigated effects of PsbP knockdown on protein supercomplex organization within the thylakoid membranes and photosynthetic properties of PSII. In PsbP-RNAi leaves, PSII dimers binding the extrinsic PsbO protein could be formed, while the light-harvesting complex II (LHCII)-PSII supercomplexes were severely decreased. Furthermore, LHCII and major PSII subunits were significantly dephosphorylated. Electron microscopic analysis showed that thylakoid grana stacking in PsbP-RNAi chloroplast was largely disordered and appeared similar to the stromally-exposed or marginal regions of wild-type thylakoids. Knockdown of PsbP modified both the donor and acceptor sides of PSII; In addition to the lower water-splitting activity, the primary quinone QA in PSII was significantly reduced even when the photosystem I reaction center (P700) was noticeably oxidized, and thermoluminescence studies suggested the stabilization of the charged pair, S2/QA−. These data indicate that assembly and/or maintenance of the functional MnCa cluster is perturbed in absence of PsbP, which impairs accumulation of final active forms of PSII supercomplexes. 相似文献
7.
Grasse N Mamedov F Becker K Styring S Rögner M Nowaczyk MM 《The Journal of biological chemistry》2011,286(34):29548-29555
The multisubunit membrane protein complex Photosystem II (PSII) catalyzes one of the key reactions in photosynthesis: the light-driven oxidation of water. Here, we focus on the role of the Psb27 assembly factor, which is involved in biogenesis and repair after light-induced damage of the complex. We show that Psb27 is essential for the survival of cyanobacterial cells grown under stress conditions. The combination of cold stress (30 °C) and high light stress (1000 μmol of photons × m(-2) × s(-1)) led to complete inhibition of growth in a Δpsb27 mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus, whereas wild-type cells continued to grow. Moreover, Psb27-containing PSII complexes became the predominant PSII species in preparations from wild-type cells grown under cold stress. Two different PSII-Psb27 complexes were isolated and characterized in this study. The first complex represents the known monomeric PSII-Psb27 species, which is involved in the assembly of PSII. Additionally, a novel dimeric PSII-Psb27 complex could be allocated in the repair cycle, i.e. in processes after inactivation of PSII, by (15)N pulse-label experiments followed by mass spectrometry analysis. Comparison with the corresponding PSII species from Δpsb27 mutant cells showed that Psb27 prevented the release of manganese from the previously inactivated complex. These results indicate a more complex role of the Psb27 protein within the life cycle of PSII, especially under stress conditions. 相似文献
8.
Dinesh C. Soares Nicholas J. Bradshaw Juan Zou Christopher K. Kennaway Russell S. Hamilton Zhuo A. Chen Martin A. Wear Elizabeth A. Blackburn Janice Bramham Bettina B?ttcher J. Kirsty Millar Paul N. Barlow Malcolm D. Walkinshaw Juri Rappsilber David J. Porteous 《The Journal of biological chemistry》2012,287(39):32381-32393
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8–167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly. 相似文献
9.
10.
Ryan G. Walker Xiaodi Deng John T. Melchior Jamie Morris Patrick Tso Martin K. Jones Jere P. Segrest Thomas B. Thompson W. Sean Davidson 《The Journal of biological chemistry》2014,289(9):5596-5608
Apolipoprotein (apo)A-IV plays important roles in dietary lipid and glucose metabolism, and knowledge of its structure is required to fully understand the molecular basis of these functions. However, typical of the entire class of exchangeable apolipoproteins, its dynamic nature and affinity for lipid has posed challenges to traditional high resolution structural approaches. We previously reported an x-ray crystal structure of a dimeric truncation mutant of apoA-IV, which showed a unique helix-swapping molecular interface. Unfortunately, the structures of the N and C termini that are important for lipid binding were not visualized. To build a more complete model, we used chemical cross-linking to derive distance constraints across the full-length protein. The approach was enhanced with stable isotope labeling to overcome ambiguities in determining molecular span of the cross-links given the remarkable similarities in the monomeric and dimeric apoA-IV structures. Using 51 distance constraints, we created a starting model for full-length monomeric apoA-IV and then subjected it to two modeling approaches: (i) molecular dynamics simulations and (ii) fitting to small angle x-ray scattering data. This resulted in the most detailed models yet for lipid-free monomeric or dimeric apoA-IV. Importantly, these models were of sufficient detail to direct the experimental identification of new functional residues that participate in a “clasp” mechanism to modulate apoA-IV lipid affinity. The isotope-assisted cross-linking approach should prove useful for further study of this family of apolipoproteins in both the lipid-free and -bound states. 相似文献
11.
Xiaoping Yi 《FEBS letters》2009,583(12):2142-116
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of Photosystem II. A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Earlier we had documented significant alterations in a variety of Photosystem II parameters in these plant lines [Yi, X., Liu, H., Hargett, S. R., Frankel, L. K., Bricker, T. M. (2007). The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J. Biol. Chem. 34, 24833-24841]. In this communication, we document extensive defects in the thylakoid membrane architecture of these plants. Interestingly, strong interfering RNA suppression of the genes encoding the PsbQ protein (At4g21280 and At4g05180) was found to have no effect on the architecture of thylakoid membranes. 相似文献
12.
Ryo Nagao Akira Moriguchi Tatsuya Tomo Ayako Niikura Saori Nakajima Takehiro Suzuki Akinori Okumura Masako Iwai Jian-Ren Shen Masahiko Ikeuchi Isao Enami 《The Journal of biological chemistry》2010,285(38):29191-29199
Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQ′, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQ′, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl− and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl− and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms. 相似文献
13.
We used two different techniques to measure the recovery time of Photosystem II following the transfer of a single electron from P-680 to QA in thylakoid membranes isolated from spinach. Electron transfer in Photosystem II reaction centers was probed first by spectroscopic measurements of the electrochromic shift at 518 nm due to charge separation within the reaction centers. Using two short actinic flashes separated by a variable time interval we determined the time required after the first flash for the electrochromic shift at 518 nm to recover to the full extent on the second flash. In the second technique the redox state of QA at variable times after a saturating flash was monitored by measurement of the fluorescence induction in the absence of an inhibitor and in the presence of ferricyanide. The objective was to determine the time required after the actinic flash for the fluorescence induction to recover to the value observed after a 60 s dark period. Measurements were done under conditions in which (1) the electron donor for Photosystem II was water and the acceptor was the endogenous plastoquinone pool, and (2) Q400, the Fe2+ near QA, remained reduced and therefore was not a participant in the flash-induced electron-transfer reactions. The electrochromic shift at 518 nm and the fluorescence induction revealed a prominent biphasic recovery time for Photosystem II reaction centers. The majority of the Photosystem II reaction centers recovered in less than 50 ms. However, approx. one-third of the Photosystem II reaction centers required a half-time of 2–3 s to recover. Our interpretation of these data is that Photosystem II reaction centers consist of at least two distinct populations. One population, typically 68% of the total amount of Photosystem II as determined by the electrochromic shift, has a steady-state turnover rate for the electron-transfer reaction from water to the plastoquinone pool of approx. 250 e− / s, sufficiently rapid to account for measured rates of steady-state electron transport. The other population, typically 32%, has a turnover rate of approx. 0.2 e− / s. Since this turnover rate is over 1000-times slower than normally active Photosystem II complexes, we conclude that the slowly turning over Photosystem II complexes are inconsequential in contributing to energy transduction. The slowly turning over Photosystem II complexes are able to transfer an electron from P-680 to QA rapidly, but the reoxidation of Q−A is slow (t1/2 = 2 s). The fluorescence induction measurements lead us to conclude that there is significant overlap between the slowly turning over fraction of Photosystem II complexes and PS IIβ reaction centers. One corollary of this conclusion is that electron transfer from P-680 to QA in PS IIβ reaction centers results in charge separation across the membrane and gives rise to an electrochromic shift. 相似文献
14.
15.
Wilson Wong Andrew I. Webb Maya A. Olshina Giuseppe Infusini Yan Hong Tan Eric Hanssen Bruno Catimel Cristian Suarez Melanie Condron Fiona Angrisano Thomas NebI David R. Kovar Jake Baum 《The Journal of biological chemistry》2014,289(7):4043-4054
Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing. 相似文献
16.
Khanna M Chen CH Kimble-Hill A Parajuli B Perez-Miller S Baskaran S Kim J Dria K Vasiliou V Mochly-Rosen D Hurley TD 《The Journal of biological chemistry》2011,286(50):43486-43494
Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated β-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype. 相似文献
17.
18.
Shimizu T Lin F Hasegawa M Okada K Nojiri H Yamane H 《The Journal of biological chemistry》2012,287(23):19315-19325
Sakuranetin, the major flavonoid phytoalexin in rice, is induced by ultraviolet (UV) irradiation, CuCl(2) treatment, jasmonic acid treatment, and infection by phytopathogens. It was recently demonstrated that sakuranetin has anti-inflammatory activity, anti-mutagenic activity, anti-pathogenic activities against Helicobacter pylori, Leishmania, and Trypanosoma and contributes to the maintenance of glucose homeostasis in animals. Thus, sakuranetin is a useful compound as a plant antibiotic and a potential pharmaceutical agent. Sakuranetin is biosynthesized from naringenin by naringenin 7-O-methyltransferase (NOMT). In previous research, rice NOMT (OsNOMT) was purified to apparent homogeneity from UV-treated wild-type rice leaves, but the purified protein, named OsCOMT1, exhibited caffeic acid O-methyltransferase (COMT) activity and not NOMT activity. In this study, we found that OsCOMT1 does not contribute to sakuranetin production in rice in vivo, and we purified OsNOMT using the oscomt1 mutant. A crude protein preparation from UV-treated oscomt1 leaves was subjected to three sequential purification steps, resulting in a 400-fold purification from the crude enzyme preparation. Using SDS-PAGE, the purest enzyme preparation showed a minor band at an apparent molecular mass of 40 kDa. Two O-methyltransferase-like proteins, encoded by Os04g0175900 and Os12g0240900, were identified from the 40-kDa band by MALDI-TOF/TOF analysis. Recombinant Os12g0240900 protein showed NOMT activity, but the recombinant Os04g0175900 protein did not. Os12g0240900 expression was induced by jasmonic acid treatment in rice leaves prior to sakuranetin accumulation, and the Os12g0240900 protein showed reasonable kinetic properties to OsNOMT. On the basis of these results, we conclude that Os12g0240900 encodes an OsNOMT. 相似文献
19.
R Tokutsu N Kato KH Bui T Ishikawa J Minagawa 《The Journal of biological chemistry》2012,287(37):31574-31581
Photosystem II (PSII) is a multiprotein complex that splits water and initiates electron transfer in photosynthesis. The central part of PSII, the PSII core, is surrounded by light-harvesting complex II proteins (LHCIIs). In higher plants, two or three LHCII trimers are seen on each side of the PSII core whereas only one is seen in the corresponding positions in Chlamydomonas reinhardtii, probably due to the absence of CP24, a minor monomeric LHCII. Here, we re-examined the supramolecular organization of the C. reinhardtii PSII-LHCII supercomplex by determining the effect of different solubilizing detergents. When we solubilized the thylakoid membranes with n-dodecyl-β-d-maltoside (β-DM) or n-dodecyl-α-d-maltoside (α-DM) and subjected them to gel filtration, we observed a clear difference in molecular mass. The α-DM-solubilized PSII-LHCII supercomplex bound twice more LHCII than the β-DM-solubilized supercomplex and retained higher oxygen-evolving activity. Single-particle image analysis from electron micrographs of the α-DM-solubilized and negatively stained supercomplex revealed that the PSII-LHCII supercomplex had a novel supramolecular organization, with three LHCII trimers attached to each side of the core. 相似文献
20.
《Molecular & cellular proteomics : MCP》2019,18(2):308-319
Highlights
- •Over 1700 Arabidopsis proteins with thermal models in multiple replicates.
- •Melting temperature correlates with 1°, 2°, and 3° protein characteristics.
- •Ligand-induced thermal shifts are evident in complex protein extracts.