首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distributed in tropical and warm-temperate waters worldwide, Lobophora species are found across the Greater Caribbean (i.e., Caribbean sensu stricto, Gulf of Mexico, Florida, the Bahamas, and Bermuda). We presently discuss the diversity, ecology, biogeography, and evolution of the Greater Caribbean Lobophora species based on previous studies and an extensive number of samples collected across the eastern, southern, and to a lesser extent western Caribbean. A total of 18 Lobophora species are now documented from the Greater Caribbean, of which five are newly described (L. agardhii sp. nov., L. dickiei sp. nov., L. lamourouxii sp. nov., L. richardii sp. nov., and L. setchellii sp. nov.). Within the Greater Caribbean, the eastern Caribbean and the Central Province are the most diverse ecoregion and province (16 spp.), respectively. Observed distribution patterns indicate that Lobophora species from the Greater Caribbean have climate affinities (i.e., warm-temperate vs. tropical affinities). In total, 11 Lobophora species exclusively occur in the Greater Caribbean; six are present in the western Atlantic; two in the Indo-Pacific; and one in the eastern Pacific. Biogeographic analyses support that no speciation occurred across the Isthmus of Panama, and that the Greater Caribbean acted as a recipient region for species from the Indo-Pacific and as a region of diversification as well as a donor region to the North-eastern Atlantic. The Greater Caribbean is not an evolutionary dead end for Lobophora, but instead generates and exports diversity. Present results illustrate how sampling based on DNA identification is reshaping biogeographic patterns, as we know them.  相似文献   

2.
Nonindigenous parasite introductions and range expansions have become a major concern because of their potential to restructure communities and impact fisheries. Molecular markers provide an important tool for reconstructing the pattern of introduction. The parasitic castrator Loxothylacus panopaei, a rhizocephalan barnacle, infects estuarine mud crabs in the Gulf of Mexico and southeastern Florida. A similar parasite introduced into Chesapeake Bay before 1964, presumably via infected crabs associated with oysters from the Gulf of Mexico, was identified as L. panopaei. Our samples of this species during 2004 and 2005 show that the introduced range has expanded as far south as Edgewater, Florida, just north of the northern endemic range limit. The nonindigenous range expanded southward at a rate of up to 165 km/yr with relatively high prevalence, ranging from 30 to 93%. Mitochondrial DNA sequences from the cytochrome oxidase I gene showed that these nonindigenous L. panopaei are genetically distinct from the endemic parasites in southeastern Florida and the eastern Gulf of Mexico. The genetic difference was also associated with distinct host spectra. These results are incompatible with an eastern Gulf source population, but suggest that unrecognized genetic and phenotypic population structure may occur among Gulf of Mexico populations of Loxothvlacus.  相似文献   

3.
The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: NA = 2.69; HE = 0.41 and ChB: NA = 3.0; HE = 0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx.  相似文献   

4.
Invasive lionfish (Pterois volitans/miles complex) now permeate the entire tropical western Atlantic, Caribbean Sea, and Gulf of Mexico, but lionfish abundance has been measured only in select locations in the field. Despite its rapid range expansion, a comprehensive meta-population analysis of lionfish ‘sources’ and ‘sinks’ and consequentially the invader’s potential abundance and impacts on economically important, sympatric reef fishes have not been assessed. These data are urgently needed to spatially direct control efforts and to plan for and perhaps mitigate lionfish-caused damage. Here, we use a biophysical computer model to: (1) forecast larval lionfish sources and sinks that are also delineated as low to high lionfish ‘density zones’ throughout their invaded range, and (2) assess the potential vulnerability of five grouper and snapper species—Epinephelus morio, Mycteroperca microlepis, Epinephelus flavolimbatus, Lutjanus campechanus, and Rhomboplites aurorubens—to lionfish within these density zones in the Gulf of Mexico. Our results suggest that the west Florida shelf and nearshore waters of Texas, USA, and Guyana, South America, function both as lionfish sources and sinks and should be a high priority for targeted lionfish control. Furthermore, of the five groupers and snappers studied, the high fishery value E. morio (red grouper) is the Gulf of Mexico species most at risk from lionfish. Lacking a comprehensive lionfish control policy, these risk exposure data inform managers where removals should be focused and demonstrate the risk to five sympatric native groupers and snappers in the Gulf of Mexico that may be susceptible to dense lionfish aggregations, should control efforts fail.  相似文献   

5.
A sleeper shark, genus Somniosus, was observed in the Colombian Caribbean. A Remote Operated Vehicle (ROV) recorded a sleeper shark specimen during an inspection while drilling a hydrocarbon exploratory well at 1,820 m water depth. This is the first record of a sleeper shark for the southern Colombian Caribbean. The previous most southern records of Somniosid sharks in the tropical and subtropical western Atlantic came from the western and northern Gulf of Mexico, and from Cuba.  相似文献   

6.
Aim We investigated the spatio‐temporal patterns of genetic diversity in West Indian and mainland populations of a widespread parthenogenic ant (Platythyrea punctata F. Smith) to infer source populations and subsequent colonizations across its geographic range. Location Central America, Texas and the West Indies (Florida, the Bahamas, Greater and Lesser Antilles). Methods We employed phylogeographic reconstruction based on 1451 bp of mitochondrial DNA (cytochrome c oxidase subunits I and II) sequenced from 91 individuals of P. punctata. We employed standard population genetic analyses, Bayesian phylogenetic analyses, haplotype networks and molecular dating methods as performed by beast . We also employed phylogenetic analysis using two nuclear markers (970 bp) to understand the placement of P. punctata in the globally distributed genus Platythyrea. Results Based on highly reduced haplotypic variation and temporal estimates, rapid expansion and dispersal from Central America best explains the observed distribution of haplotypes. Platythyrea punctata successfully invaded the West Indies very few times. One haplotype occurred on every island surveyed from the Bahamas and Florida in the north to Barbados at the southern edge of its range. Haplotype diversity in the West Indies is quite low, despite a larger sample size relative to the mainland. Most mainland colonies collected each possessed a unique haplotype, whereas only Florida and the larger islands (the Dominican Republic, Puerto Rico and Guadeloupe) contained more than one haplotype. Island haplotypes were most similar to haplotypes collected in northern Mexico and southern Texas, but genetic distances were nevertheless high. The putative sister species of P. punctata appears to be an endemic of Hispaniola (P. strenua Wheeler & Mann), even though older, mainland populations of P. punctata are sympatric with at least two other congenerics. Main conclusions Dispersal seems very limited on the mainland, with well‐defined clades corresponding to geographical regions. Colonization of the islands from the mainland was extremely rare, but once successful there were very few barriers to expansion to nearly every island in the West Indies. We hypothesize that this invasion occurred during the late Pleistocene as the climate became warmer and less arid.  相似文献   

7.

Aim

Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant sites would suggest communities structured by speciation and dispersal limitations. A nested pattern would be consistent with a steep resource gradient. Correlation of species composition with climatic variation would suggest communities structured by broad‐scale environmental filtering.

Location

The West Indies (The Bahamas, Cuba, Hispaniola, Jamaica, Puerto Rico, US Virgin Islands, Guadeloupe, Martinique, St. Lucia), Providencia (Colombia), south Florida (USA) and Florida Keys (USA).

Taxon

Seed plants—woody taxa (primarily trees).

Methods

We compiled 572 plots from 23 surveys conducted between 1969 and 2016. Hierarchical clustering of species in plots, and indicator species analysis for the resulting groups of sites, identified geographical patterns of turnover in species composition. Nonparametric analysis of variance, applied to principal components of bioclimatic variables, determined the degree of covariation in climate with location. Nestedness versus turnover in species composition was evaluated using beta diversity partitioning. Generalized dissimilarity modelling partitioned the effect of climate versus geographical distance on species composition.

Results

Despite a set of commonly occurring species, SDTF tree community composition was distinct among islands and was characterized by spatial turnover on climatic gradients that covaried with geographical gradients. Greater Antillean islands were characterized by endemic indicator species. Northern subtropical areas supported distinct, rather than nested, SDTF communities in spite of low levels of endemism.

Main conclusions

The SDTF species composition was correlated with climatic variation. SDTF on large Greater Antillean islands (Hispaniola, Jamaica and Cuba) was characterized by endemic species, consistent with their geological history and the biogeography of plant lineages. These results suggest that both environmental filtering and speciation shape Caribbean SDTF tree communities.  相似文献   

8.
Despite recent progress defining the morphological and genetic characteristics of forms of the bottlenose dolphin inhabiting offshore waters, little is known of their behavior or ranging patterns. Reports suggest that an “offshore form” exists between the 200- and 2,000-m isobaths in distinct Gulf of Mexico and western North Atlantic stocks, while one or more coastal forms inhabit the waters inshore. Two opportunities to track rehabilitated adult male bottlenose dolphins with satellite-linked transmitters occurred in 1997. “Rudy” stranded in NW Florida and was released in the Gulf of Mexico off central west Florida. He moved around Florida and northward to off Cape Hatteras, NC, covering 2,050 km in 43 d. “Gulliver” stranded near St. Augustine and was released off Cape Canaveral, FL. He moved 4,200 km in 47 d to a location northeast of the Virgin Islands. Gulliver swam through 5,000-m-deep waters 300 km offshore of the northern Caribbean islands, against the North Equatorial Current. These records expand the range and habitat previously reported for the offshore stock of bottlenose dolphins inhabiting the waters off the southeastern United States, underscore the difficulties of defining pelagic stocks, illustrate the success of rehabilitation efforts, indicate the value of follow-up monitoring of rehabilitated and released cetaceans, and expand our understanding of the long-range movement capabilities of a dolphin species more commonly thought of as a resident in coastal waters.  相似文献   

9.
To resolve the population genetic structure and phylogeography of the West Indian manatee ( Trichechus manatus ), mitochondrial (mt) DNA control region sequences were compared among eight locations across the western Atlantic region. Fifteen haplotypes were identified among 86 individuals from Florida, Puerto Rico, the Dominican Republic, Mexico, Colombia, Venezuela, Guyana and Brazil. Despite the manatee's ability to move thousands of kilometres along continental margins, strong population separations between most locations were demonstrated with significant haplotype frequency shifts. These findings are consistent with tagging studies which indicate that stretches of open water and unsuitable coastal habitats constitute substantial barriers to gene flow and colonization. Low levels of genetic diversity within Florida and Brazilian samples might be explained by recent colonization into high latitudes or bottleneck effects. Three distinctive mtDNA lineages were observed in an intraspecific phylogeny of T. manatus , corresponding approximately to: (i) Florida and the West Indies; (ii) the Gulf of Mexico to the Caribbean rivers of South America; and (iii) the northeast Atlantic coast of South America. These lineages, which are not concordant with previous subspecies designations, are separated by sequence divergence estimates of d = 0.04–0.07, approximately the same level of divergence observed between T. manatus and the Amazonian manatee ( T. inunguis , n = 16). Three individuals from Guyana, identified as T. manatus , had mtDNA haplotypes which are affiliated with the endemic Amazon form T. inunguis . The three primary T. manatus lineages and the T. inunguis lineage may represent relatively deep phylogeographic partitions which have been bridged recently due to changes in habitat availability (after the Wisconsin glacial period, 10 000 BP ), natural colonization, and human-mediated transplantation.  相似文献   

10.
Abstract We investigated the genetic structure of blacktip shark (Carcharhinus limbatus) continental nurseries in the northwestern Atlantic Ocean, Gulf of Mexico, and Caribbean Sea using mitochondrial DNA control region sequences and eight nuclear microsatellite loci scored in neonate and young-of-the-year sharks. Significant structure was detected with both markers among nine nurseries (mitochondrial PhiST = 0.350, P < 0.001; nuclear PhiST = 0.007, P < 0.001) and sharks from the northwestern Atlantic, eastern Gulf of Mexico, western Gulf of Mexico, northern Yucatan, and Belize possessed significantly different mitochondrial DNA haplotype frequencies. Microsatellite differentiation was limited to comparisons involving northern Yucatan and Belize sharks with nuclear genetic homogeneity throughout the eastern Gulf of Mexico, western Gulf of Mexico, and northwestern Atlantic. Differences in the magnitude of maternal vs. biparental genetic differentiation support female philopatry to northwestern Atlantic, Gulf of Mexico, and Caribbean Sea natal nursery regions with higher levels of male-mediated gene flow. Philopatry has produced multiple reproductive stocks of this commercially important shark species throughout the range of this study.  相似文献   

11.
The introduction of species outside their natural range is one of the major threats to biodiversity and has often been identified as a menace to agricultural production and human health. The raccoon is recognized as a globally invasive species. However, several populations in the Caribbean were long considered native and endemic species. Although previous genetic studies have shown that raccoons from the islands of the West Indies belong to the northern raccoon Procyon lotor, the history and origin of these introductions remain poorly known. In this study, we investigated the geographical origin of Caribbean raccoon populations using newly available molecular genetic data. We used haplotype network analyses of two mitochondrial markers, Cytochrome b and Control Region, with new sequences and those from GenBank. We also specifically investigated the origin of the endangered endemic Cozumel raccoon, Procyon pygmaeus, by re-analyzing data. Our results confirmed that all Caribbean raccoon populations belong to the northern raccoon. Bahamian populations originated from two different sources in Florida, and the Lesser Antilles raccoons seem to originate from northern regions of the native range. In addition, our results question the taxonomic status of the Cozumel raccoon, as currently available genetic data support a conspecific status with the northern raccoon. These results have important implications in the context of conservation and ecosystem management. Identifying origins of introduced populations and understanding the history of their introductions will facilitate studies on the impact of the raccoon on insular ecosystems.  相似文献   

12.
Relationships were analyzed between sea surface temperature (SST) and annual growth characteristics (density, extension rate and calcification rate) of the Caribbean reef-building coral Montastraea annularis. Colonies were collected from 12 localities in the Gulf of Mexico and the Caribbean Sea. Two well-separated relationships were found, one for the Gulf of Mexico and the other for the Caribbean Sea. Calcification rate and skeletal density increased with increasing SST in both regions, while extension rate tended to decrease. Calcification rate increased ∼0.57 g cm−2 year−1 for each 1 °C increase in SST. Zero calcification was projected to occur at 23.7 °C in corals from the Gulf of Mexico and at 25.5 °C in corals from the Caribbean Sea. The 24 °C annual average SST isotherm marks the northern limit of distribution of M. annularis. Montastraea annularis populations of the Gulf of Mexico are isolated from those of the Caribbean Sea, and results indicate that corals from the Gulf of Mexico are adapted to growth at lower minimum and average annual SST. Corals from both the Gulf of Mexico and the Caribbean Sea, growing at lower SSTs and having lower calcification rates, extend their skeletons the same or more than those growing at higher SSTs. They achieve this by putting more of their calcification resources into extension and less into thickening, i.e., by sacrificing density.  相似文献   

13.
Aim We analysed the distribution patterns of the eastern Pacific octocoral genus Pacifigorgia and deduced its ancestral distribution to determine why Pacifigorgia is absent from the Gulf of Mexico, the Caribbean of central America, and the Antilles. We also examined the current patterns of endemism for Pacifigorgia to look for congruence between hot spots of endemism in the genus and generally recognized areas of endemism for the eastern Pacific. Location The tropical eastern Pacific and western Atlantic, America. Methods We used track compatibility analysis (TCA) and parsimony analysis of endemicity (PAE) to derive ancestral distribution patterns and hot spots of endemism, respectively. Distributional data for Pacifigorgia were gathered from several museum collections and from fieldwork, particularly in the Pacific of Costa Rica and Panama. Results A single generalized track joined the three main continental eastern Pacific biogeographical provinces and the western Atlantic. This track can be included within a larger eastern Atlantic–eastern Pacific transoceanic track that may be the oldest transoceanic track occurring in the region. PAE results designate previously recognized eastern Pacific biogeographical provinces as Pacifigorgia hot spots of endemism. The number of endemic species, which for other taxonomic groups is similar among the eastern Pacific provinces, is higher in the Panamic province for Pacifigorgia. Main conclusions We propose that the absence of Pacifigorgia from the Gulf of Mexico, the Caribbean of central America, and the Antilles is the result of an ancient absence of the genus from these areas rather than the consequence of a major, recent, extinction episode. The Cortez province and the Mexican province appear together as a result of either non‐response to vicariance or dispersal across the Sinaloan Gap. We posit that the Central American Gap acts as a barrier that separates the Panamic province from the northern Cortez–Mexican province.  相似文献   

14.
Synopsis Distribution of leptocephali ofConger in the Western North Atlantic Ocean was studied using specimens from our collections, specimens from other collections, and various existing collection records. The presence of leptocephali ofConger oceanicus andConger triporiceps < 30 mm long over deep water in the southwestern Sargasso Sea in autumn and winter implies a protracted spawning period there. The subtropical convergence zone, meandering east-west across the Sargasso Sea, is probably the northern limit of spawning of both species. Spawning may also occur close to the Bahamas and Antilles.C. triporiceps may spawn also in the Caribbean Sea judging by the capture of small leptocephali in the western Caribbean and of the more southerly continental distribution of its juveniles. The claim of Johannes Schmidt in 1931 that the EuropeanC. conger spawns across the North Atlantic into the western Sargasso Sea is probably incorrect, because leptocephali ofConger are rare in the eastern Sargasso Sea and becauseC. triporiceps, with myomere numbers overlapping those ofC. conger, was recently described in the western North Atlantic. With increasing size, leptocephali ofC. oceanicus and a portion ofC. triporiceps spread westward and northward in the Florida Current and Gulf Stream, but larger leptocephali especially ofC. triporiceps are found also in the Caribbean and Gulf of Mexico. Spawning ofC. oceanicus in the Sargasso Sea indicates that adults cross the Florida Current-Gulf Stream, and successful leptocephali cross the current in the opposite direction to colonize juvenile habitat on the continental shelf, a migratory pattern similar to that of the American eelAnguilla rostrata (Anguillidae).  相似文献   

15.
The West Indies cycad, Zamia pumila, is restricted to the Greater Antilles, northern Bahama Islands, Florida, and the southeastern coast of Georgia. An electrophoretic study based on nine enzymes compared 21 accessions from throughout the range of the species. Lower levels of intrapopulation variation than those reported for ferns, other gymnosperms, and angiosperms were discovered for the two more extensively sampled populations. However, this variation was similar to that found in other island taxa and in the endemic Australian cycad, Macrozamia communis. In contrast, allozyme divergence among accessions of Z. pumila appeared relatively high, mostly as a result of rare alleles restricted in geographic distribution. The age and biogeography of Z. pumila may gave contributed to population differentiation. Also, mean number of alleles per locus was low for the species (1.75). Finally, the time-since-divergence value (10.8 million years ago) between Z. pumila and its closest extant relative, Z. splendens, was much smaller than the age of Z. pumila suggested by the fossil record and historical geology of the Caribbean (30–60 million years ago). Together, these data indicate that biochemical evolution within this species, and perhaps in all cycads, is slow when compared to that of noncycad seed plants.  相似文献   

16.
As part of the US Coral Reef Task Force's National Program to Map, Assess, Inventory, and Monitor US Coral Reef Ecosystems, a comprehensive survey of projects/programs monitoring coral reef ecosystems and related habitats (i.e., seagrass beds and mangroves) in the US Caribbean and Pacific was undertaken. Information was gathered on a total of 296 monitoring and assessment projects conducted since 1990 in the US Caribbean and the Gulf of Mexico. Substantial gaps in monitoring coverage of US coral reef ecosystems were revealed through geographic information system (GIS) analysis of survey metadata. Although southern Florida contains approximately two-thirds of all marine monitoring projects found in the US Caribbean and Gulf of Mexico, we were unable to identify any ongoing projects that monitor coral reefs along Florida's western coast and off of the Florida Middle Grounds. Additionally, Florida is covered by approximately 1 900 km2 of mangroves, yet there were only four ongoing projects that monitor this ecosystem, leaving gaps in coverage in the Lower and Middle Keys and along the eastern and western coasts. The Flower Garden Banks National Marine Sanctuary, located offshore of the Texas/Louisiana border, has an integral long-term monitoring program, but lacks a monitoring project that gathers long-term, quantitative data on reef lish abundance and certain water quality parameters. Numerous coral reef monitoring projects in Puerto Rico are concentrated on the island's southwestern coast surrounding La Parguera, while far fewer monitoring projects are conducted along the northern and southeastern coasts and around Vieques Island. In the US Virgin Islands, the paucity of monitoring projects in large areas of St. Croix and St. Thomas contrasts with monitoring activity in three marine protected areas (MPAs), where 66% of the US Virgin Islands' coral reef monitoring sites were found. Only a series of assessments have been conducted at Navassa, a small, uninhabited island located 55 km west of Haiti and 137 km northeast of Jamaica. In order to better understand changes in coral reef communities and to produce a series of biennial reports on the status of US coral reef ecosystems, the National Oceanic and Atmospheric Administration (NOAA) is developing a national coral reef monitoring network. This network has already begun to fill some of these gaps in monitoring coverage through issuing cooperative grants to states and territories to build long-term monitoring capacity.  相似文献   

17.
Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns.  相似文献   

18.
Allopatry has traditionally been viewed as the primary driver of speciation in marine taxa, but the geography of the marine environment and the larval dispersal capabilities of many marine organisms render this view somewhat questionable. In marine fishes, one of the earliest and most highly cited empirical examples of ecological speciation with gene flow is the slippery dick wrasse, Halichoeres bivittatus. Evidence for this cryptic or incipient speciation event was primarily in the form of a deep divergence in a single mitochondrial locus between the northern and southern Gulf of Mexico, combined with a finding that these two haplotypes were associated with different habitat types (“tropical” vs. “subtropical”) in the Florida Keys and Bermuda, where they overlap. Here, we examine habitat assortment in the Florida Keys using a broader sampling of populations and habitat types than were available for the original study. We find no evidence to support the claim that haplotype frequencies differ between habitat types, and little evidence to support any differences between populations in the Keys. These results undermine claims of ecological speciation with gene flow in Halichoeres bivittatus. Future claims of this type should be supported by multiple lines of evidence that illuminate potential mechanisms and allow researchers to rule out alternative explanations for spatial patterns of genetic differences.

In this study, we attempt to replicate one of the most highly cited cases of parapatric ecological speciation in marine fishes. Despite having larger sample sizes and a broader sampling of habitats than previous studies, we found no support for ecological speciation or speciation with gene flow.  相似文献   

19.
A species of seagrass in the genus Halophila was found growing in a shallow lagoon on the west shore of Antigua in the Caribbean West Indies. Genetic analysis showed the plants were Halophila ovalis. In addition, the samples had no genetic deviation (using nrDNA sequences) from Halophila johnsonii, considered to be an endemic and endangered species in Florida, USA. Morphological analysis demonstrated the Antiguan Halophila to be well within the range of plant characteristics previously described in the literature for H. ovalis, except for leaf width and number of seeds per fruit, and again, not different from H. johnsonii and very closely related to H. ovalis from the Indo-Pacific. Ours is the first report of H. ovalis in the Tropical Atlantic bioregion.  相似文献   

20.
The southeastern coast of Florida, USA supports a substantial recreational fishery, yet little is known of the coral reef ecosystem or fisheries resources past 50 m depth. Fish assemblages associated with low‐relief substrate and three vessel reefs between 50 and 120 m depth off southeast Florida were surveyed by remotely operated vehicles providing the first characterization of the mesophotic fish assemblages in the region. Two distinct assemblages were observed on low‐relief substrate and high‐relief vessel reefs. A total of 560 fishes of 42 species was recorded on 27 dives on low‐relief substrate, and 50 152 fishes of 65 species were recorded on 24 dives on three vessel reefs. Small planktivorous Anthiinae fishes and several economically valuable species were common on vessel reefs but rare on low‐relief substrate. Fish assemblages on vessel reefs more closely resembled those found at similar depths in high‐relief natural areas off east‐central Florida and the Gulf of Mexico than those associated with adjacent low‐relief habitat or nearby coral reef tracts. From a fisheries perspective, these results provide limited support to the hypothesis that in deep‐water regions with limited relief, vessel reefs may provide an opportunity to increase fish diversity and abundance by creating high‐relief habitat without compromising adjacent fish assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号