共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Petr Pecina Hana Nůsková Vendula Karbanová Vilma Kaplanová Tomáš Mráček Josef Houštěk 《BBA》2018,1859(5):374-381
The central stalk of mitochondrial ATP synthase consists of subunits γ, δ, and ε, and along with the membraneous subunit c oligomer constitutes the rotor domain of the enzyme. Our previous studies showed that mutation or deficiency of ε subunit markedly decreased the content of ATP synthase, which was otherwise functionaly and structuraly normal. Interestingly, it led to accumulation of subunit c aggregates, suggesting the role of the ε subunit in assembly of individual enzyme domains. In the present study we focused on the role of subunits γ and δ. Using shRNA knockdown in human HEK293 cells, the protein levels of γ and δ were decreased to 30% and 10% of control levels, respectively. The content of the assembled ATP synthase decreased in accordance with the levels of the silenced subunits, which was also the case for most structural subunits. In contrast, the hydrophobic c subunit was increased to 130% or 180%, respectively and most of it was detected as aggregates of 150–400?kDa by 2D PAGE. In addition the IF1 protein was upregulated to 195% and 300% of control levels. Both γ and δ subunits silenced cells displayed decreased ATP synthase function - lowered rate of ADP-stimulated respiration, a two-fold increased sensitivity of respiration to inhibitor oligomycin, and impaired utilization of mitochondrial membrane potential for ADP phosphorylation. In summary, similar phenotype of γ, δ and ε subunit deficiencies suggest uniform requirement for assembled central stalk as driver of the c-oligomer attachment in the assembly process of mammalian ATP synthase. 相似文献
3.
4.
5.
《Cell cycle (Georgetown, Tex.)》2013,12(6):953-960
The synthesis and degradation of hBora is important for the regulation of mitotic entry and exist. In G2 phase, hBora can complex with Aurora A to activate Plk1 and control mitotic entry. However, whether the post-translational modification of hBora is relevant to the mitotic entry still unclear. Here, we used the LC-MS/MS phosphopeptide mapping assay to identify 13 in vivo hBora phosphorylation sites and characterized that GSK3β can interact with hBora and phosphorylate hBora at Ser274 and Ser278. Pharmacological inhibitors of GSK3β reduced the retarded migrating band of hBora in cells and diminished the phosphorylation of hBora by in vitro kinase assay. Moreover, as well as in GSK3β activity-inhibited cells, specific knockdown of GSK3β by shRNA and S274A/S278 hBora mutant-expressing cells also exhibited the reduced Plk1 activation and a delay in mitotic entry. It suggests that GSK3β activity is required for hBora-mediated mitotic entry through Ser274 and Ser278 phosphorylation. 相似文献
6.
Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-AktT308 and P-AktS473, and previous work showed decreased P-AktS473 in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-AktT308 and P-AktS473 in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-AktT308. Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-AktS473 or P-AktT308 upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA–dependent phosphorylation of AktS473 and AktT308 in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling. 相似文献
7.
Sahar Mehrpouyan Usha Menon Ian J. Tetlow Michael J. Emes 《The Plant journal : for cell and molecular biology》2021,105(4):1098-1112
Starch synthesis is an elaborate process employing several isoforms of starch synthases (SSs), starch branching enzymes (SBEs) and debranching enzymes (DBEs). In cereals, some starch biosynthetic enzymes can form heteromeric complexes whose assembly is controlled by protein phosphorylation. Previous studies suggested that SSIIa forms a trimeric complex with SBEIIb, SSI, in which SBEIIb is phosphorylated. This study investigates the post-translational modification of SSIIa, and its interactions with SSI and SBEIIb in maize amyloplast stroma. SSIIa, immunopurified and shown to be free from other soluble starch synthases, was shown to be readily phosphorylated, affecting Vmax but with minor effects on substrate Kd and Km values, resulting in a 12-fold increase in activity compared with the dephosphorylated enzyme. This ATP-dependent stimulation of activity was associated with interaction with SBEIIb, suggesting that the availability of glucan branching limits SSIIa and is enhanced by physical interaction of the two enzymes. Immunoblotting of maize amyloplast extracts following non-denaturing polyacrylamide gel electrophoresis identified multiple bands of SSIIa, the electrophoretic mobilities of which were markedly altered by conditions that affected protein phosphorylation, including protein kinase inhibitors. Separation of heteromeric enzyme complexes by GPC, following alteration of protein phosphorylation states, indicated that such complexes are stable and may partition into larger and smaller complexes. The results suggest a dual role for protein phosphorylation in promoting association and dissociation of SSIIa-containing heteromeric enzyme complexes in the maize amyloplast stroma, providing new insights into the regulation of starch biosynthesis in plants. 相似文献
8.
GSK-3β is a basally active kinase. Axin forms a complex with GSK-3β and β-catenin; this complex promotes the GSK-3β-dependent phosphorylation of β-catenin, thereby inducing its degradation. However, the inhibition of GSK-3β provokes cell migration via the dysregulation of β-catenin. In this study, we determined that the level of apoptosis signal-regulating kinase 1 (ASK1) was lower in a metastatic breast cancer cell line, compared to that of non-metastatic cancer cell lines and the knockdown of ASK1 not only induces β-catenin activation via the inhibition of GSK-3β and collapsing the subsequent protein complex by regulating Axin dynamics, but also stimulates cell migration. Together, the blockage of the GSK-3β-β-catenin pathway resulting from the knockdown of ASK1 modulates the migration of breast cancer cells. 相似文献
9.
Esterházy D Stützer I Wang H Rechsteiner MP Beauchamp J Döbeli H Hilpert H Matile H Prummer M Schmidt A Lieske N Boehm B Marselli L Bosco D Kerr-Conte J Aebersold R Spinas GA Moch H Migliorini C Stoffel M 《Cell metabolism》2011,14(3):365-377
Decreased β cell mass and function are hallmarks of type 2 diabetes. Here we identified, through a siRNA screen, beta site amyloid precursor protein cleaving enzyme 2 (Bace2) as the sheddase of the proproliferative plasma membrane protein Tmem27 in murine and human β cells. Mice with functionally inactive Bace2 and insulin-resistant mice treated with a newly identified Bace2 inhibitor both display augmented β cell mass and improved control of glucose homeostasis due to increased insulin levels. These results implicate Bace2 in the control of β cell maintenance and provide a rational strategy to inhibit this protease?for the expansion of functional pancreatic β cell mass. 相似文献
10.
Benjamin Mentzel Eike Jauch Thomas Raabe 《Biochemical and biophysical research communications》2009,379(2):637-642
The role of CK2β has been defined as the regulatory subunit of protein kinase CK2, which is a heterotetrameric complex composed of two CK2β and two catalytic active CK2α subunits. The identification of other serine/threonine kinases such as A-Raf, Chk1, and c-Mos that interact with and are regulated by CK2β has challenged this view and provided evidence for functions of CK2β outside the CK2 holoenzyme. In this report we describe the first interaction of Drosophila CK2β outside the CK2 holoenzyme with p21-activated kinase (PAK) proteins. This interaction is seen for distinct PAK and CK2β isoforms. In contrast to the CK2α–CK2β interaction, dimer formation of the CK2β subunits is not a prerequisite for binding of PAK proteins. Our results support the idea that CK2β can bind to PAK proteins in a CK2α independent manner and negatively regulates PAK kinase activity. 相似文献
11.
12.
Phospholipase A(2) enzymes hydrolyze phospholipids to liberate arachidonic acid for the biosynthesis of prostaglandins and leukotrienes. In the vascular endothelium, group IV phospholipase A(2)α (cPLA(2)α) enzyme activity is regulated by reversible association with the Golgi apparatus. Here we provide evidence for a plasma membrane cell adhesion complex that regulates endothelial cell confluence and simultaneously controls cPLA(2)α localization and enzymatic activity. Confluent endothelial cells display pronounced accumulation of vascular endothelial cadherin (VE-cadherin) at cell-cell junctions, and mechanical wounding of the monolayer stimulates VE-cadherin complex disassembly and cPLA(2)α release from the Golgi apparatus. VE-cadherin depletion inhibits both recruitment of cPLA(2)α to the Golgi and formation of tubules by endothelial cells. Perturbing VE-cadherin and increasing the soluble cPLA(2)α fraction also stimulated arachidonic acid and prostaglandin production. Of importance, reverse genetics shows that α-catenin and δ-catenin, but not β-catenin, regulates cPLA(2)α Golgi localization linked to cell confluence. Furthermore, cPLA(2)α Golgi localization also required partitioning defective protein 3 (PAR3) and annexin A1. Disruption of F-actin internalizes VE-cadherin and releases cPLA(2)α from the adhesion complex and Golgi apparatus. Finally, depletion of either PAR3 or α-catenin promotes cPLA(2)α-dependent endothelial tubule formation. Thus a VE-cadherin-PAR3-α-catenin adhesion complex regulates cPLA(2)α recruitment to the Golgi apparatus, with functional consequences for vascular physiology. 相似文献
13.
14.
15.
16.
Sun-Il Yun Hyung-Young Yoon Yoon-Sok Chung 《Apoptosis : an international journal on programmed cell death》2009,14(6):771-777
Glycogen synthase kinase-3β (GSK3β) controls the survival of osteoblasts during bone development through Wnt canonical signaling.
GSK3β is a key factor for osteoblastogenesis, but relatively less is known regarding its role in osteoblast apoptosis. Genotoxic
stress induced by etoposide promoted apoptotic signaling by GSK3β activation in C3H10T1/2 cells, a mouse mesenchymal cell
line. Etoposide led to the time-dependent activation of GSK3β and caspase-3, which resulted in PARP cleavage. LiCl (a specific
inhibitor) and siRNA (gene knock-down) of GSK3β prevented the effects of etoposide on apoptosis. Staurosporine also induced
apoptosis in C3H10T1/2 cells, but LiCl could not rescue. Bcl-2 was decreased in the cells by exposure to etoposide. LiCl completely
recovered Bcl-2 expression as shown by both the mRNA and the protein expression levels. In conclusion, etoposide-induced apoptosis
in C3H10T1/2 cells is mediated by GSK3β, which leads to caspase-3 activation via decrease in Bcl-2 expression.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
17.
Duan Xianlan Zhao Lian Jin Wancun Xiao Qinxin Peng Yani Huang Gan Li Xia DaSilva-Arnold Sonia Yu Haibo Zhou Zhiguang 《Molecular biology reports》2020,47(10):7557-7566
Molecular Biology Reports - The main pathogenesis of type 1 diabetes mellitus (T1DM) is autoimmune-mediated apoptosis of pancreatic islet β cells. We sought to characterize the function of... 相似文献
18.
Xiaohua Ma Meng Zhang Rui Yan Hainan Wu Bo Yang Zhigang Miao 《Journal of cellular and molecular medicine》2021,25(24):11300-11309
βII spectrin (β2SP) is encoded by Sptbn1 and is involved in the regulation of various cell functions. β2SP contributes to the formation of the myelin sheath, which may be related to the mechanism of neuropathy caused by demyelination. As one of the main features of cerebral ischemia, demyelination plays a key role in the mechanism of cerebral ischemia injury. Here, we showed that β2SP levels were increased, and this molecule interacted with TET2 after ischemic injury. Furthermore, we found that the level of TET2 was decreased in the nucleus when β2SP was knocked out after oxygen and glucose deprivation (OGD), and the level of 5hmC was reduced in the OGD+β2SP KO group. In contrast, the expression of β2SP did not change in TET2 KO mice. In addition, the 5hmC sequencing results revealed that β2SP can affect the level of 5hmC, the differentially hydroxymethylated region (DhMR) mainly related with the Calcium signalling pathway, cGMP-PKG signalling pathway, Wnt signalling pathway and Hippo signalling pathway. In summary, our results suggest that β2SP could regulate the gene 5hmC by interacted with TET2 and will become a potential therapeutic target for ischemic stroke. 相似文献
19.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2020,1864(3):129496
BackgroundGermline mutations in heat shock factor 4 (HSF4) cause congenital cataracts. Previously, we have shown that HSF4 is involved in regulating lysosomal pH in mouse lens epithelial cell in vitro. However, the underlying mechanism remains unclear.MethodsHSF4-deficient mouse lens epithelial cell lines and zebrafish were used in this study. Immunoblotting and quantitative RT-PCR were used for expression analysis. The protein-protein interactions were tested with GST-pull downs. The lysosomes were fractioned by ultracentrifugation.ResultsHSF4 deficiency or knock down of αB-crystallin elevates lysosomal pH and increases the ubiquitination and degradation of ATP6V1A by the proteasome. αB-crystallin localizes partially in the lysosome and interacts solely with the ATP6V1A protein of the V1 complex of V-ATPase. Furthermore, αB-crystallin can co-precipitate with mTORC1 and ATP6V1A in GST pull down assays. Inhibition of mTORC1 by rapamycin or siRNA can lead to dissociation of αB-crystallin from the ATP6V1A and mTORC1complex, shortening the half-life of ATP6V1A and increasing the lysosomal pH. Mutation of ATP6V1A/S441A (the predicted mTOR phosphorylation site) reduces its association with αB-crystallin. In the zebrafish model, HSF4 deficiency reduces αB-crystallin expression and elevates the lysosomal pH in lens tissues.ConclusionHSF4 regulates lysosomal acidification by controlling the association of αB-crystallin with ATP6V1A and mTOR and regulating ATP6V1A protein stabilization.General significanceThis study uncovers a novel function of αB-crystallin, demonstrating that αB-crystallin can regulate lysosomal ATP6V1A protein stabilization by complexing to ATP6V1A and mTOR. This highlights a novel mechanism by which HSF4 regulates the proteolytic process of organelles during lens development. 相似文献
20.
This study investigated the effects of resveratrol and miR-22-3p on muscle fiber type conversion in mouse C2C12 myotubes. Here we showed that resveratrol significantly increased the protein level of slow myosin heavy chain (MyHC) and the activities of succinic dehydrogenase and malate dehydrogenase, as well as markedly decreased the protein level of fast MyHC and the activity of lactate dehydrogenase. Immunofluorescence staining showed that resveratrol remarkably upregulated the number of slow MyHC-positive myotubes and downregulated the number of fast MyHC-positive myotubes, suggesting that resveratrol promoted muscle fiber type conversion from fast-twitch to slow-twitch in C2C12 myotubes. We also showed that miR-22-3p had an opposite function on muscle fiber type conversion and resveratrol was able to repress the expression of miR-22-3p. Furthermore, AMP-activated protein kinase (AMPK) inhibitor Compound C and miR-22-3p mimics could attenuate and eliminate muscle fiber type conversion from fast-twitch to slow-twitch cause by resveratrol, respectively. Together, we provided the first evidence that resveratrol promotes muscle fiber type conversion from fast-twitch to slow-twitch via miR-22-3p and AMPK/SIRT1/PGC-1α pathway in C2C12 myotubes. 相似文献