首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basal relationships in the Chrysomelidae (leaf beetles) were investigated using two nuclear (small and partial large subunits) and mitochondrial (partial large subunit) rRNA (≈ 3000 bp total) for 167 taxa covering most major lineages and relevant outgroups. Separate and combined data analyses were performed under parsimony and model‐based tree building algorithms from dynamic (direct optimization) and static (Clustal and BLAST) sequence alignments. The performance of methods differed widely and recovery of well established nodes was erratic, in particular when using single gene partitions, but showed a slight advantage for Bayesian inferences and one of the fast likelihood algorithms (PHYML) over others. Direct optimization greatly gained from simultaneous analysis and provided a valuable hypothesis of chrysomelid relationships. The BLAST‐based alignment, which removes poorly aligned sequence segments, in combination with likelihood and Bayesian analyses, resulted in highly defensible trees obtained in much shorter time than direct optimization, and hence is a viable alternative when data sets grow. The main taxonomic findings include the recognition of three major lineages of Chrysomelidae, including a basal “sagrine” clade (Criocerinae, Donaciinae, Bruchinae), which was sister to the “eumolpine” (Spilopyrinae, Eumolpinae, Cryptocephalinae, Cassidinae) plus “chrysomeline” (Chrysomelinae, Galerucinae) clades. The analyses support a broad definition of subfamilies (i.e., merging previously separated subfamilies) in the case of Cassidinae (cassidines + hispines) and Cryptocephalinae (chlamisines + cryptocephalines + clytrines), whereas two subfamilies, Chrysomelinae and Eumolpinae, were paraphyletic. The surprising separation of monocot feeding Cassidinae (associated with the eumolpine clade) from the other major monocot feeding groups in the sagrine clade was well supported. The study highlights the need for thorough taxon sampling, and reveals that morphological data affected by convergence had a great impact when combined with molecular data in previous phylogenetic analyses of Chrysomelidae. © The Willi Hennig Society 2007.  相似文献   

2.
The high-level classification of Chrysomelidae (leaf beetles) currently recognizes 12 or 13 well-established subfamilies, but the phylogenetic relationships among them remain ambiguous. Full mitochondrial genomes were newly generated for 27 taxa and combined with existing GenBank data to provide a dataset of 108 mitochondrial genomes covering all subfamilies. Phylogenetic analysis under maximum likelihood and Bayesian inference recovered the monophyly of all subfamilies, except that Timarcha was split from Chrysomelinae in some analyses. Three previously recognized major clades of Chrysomelidae were broadly supported: the ‘chrysomeline’ clade consisting of (Chrysomelinae (Galerucinae + Alticinae)); the ‘sagrine’ clade with internal relationships of ((Bruchinae + Sagrinae) + (Criocerinae + Donaciinae)), and the ‘eumolpine’ clade comprising (Spilopyrinae (Cassidinae (Eumolpinae (Cryptocephalinae + Lamprosomatinae)))). Relationships among these clades differed between data treatments and phylogenetic algorithms, and were complicated by two additional deep lineages, Timarcha and Synetinae. Various topological tests favoured the PhyloBayes software as the preferred inference method, resulting in the arrangement of (chrysomelines (eumolpines + sagrines)), with Timarcha placed as sister to the chrysomeline clade and Synetinae as a deep lineage splitting near the base. Whereas mitogenomes provide a solid framework for the phylogeny of Chrysomelidae, the basal relationships do not agree with the topology of existing molecular studies and remain one of the most difficult problems of Chrysomelidae phylogenetics.  相似文献   

3.
Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 –fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites. Restoration with plantings and exclusion of cattle and plantings was shown to be a successful strategy for attracting lepidopterans and cattle exclusion was the main factor explaining lepidopteran diversity.  相似文献   

4.
A total of 8 helminth species were recorded in an examination of 43 tropical gar, Atractosteus tropicus Gill, collected at the Pantanos de Centla Biosphere Reserve, Tabasco, Mexico. The parasite species included 1 adult trematode, 3 metacercariae, 1 cestode, 1 adult nematode, and 2 nematode larvae. Six of these 8 species were rare, with low prevalence (< 17%) and abundance (< 1.0 helminths per examined fish). The larvae of Contracaecum sp. were the most abundant in the sample, constituting 60% of the total helminths (64% prevalence, 3.8 +/- 5.2 abundance), followed by the cestode Proteocephalus singularis, constituting 18% of the worms (30.5% prevalence, 1.1 +/- 3.0 abundance). Species richness, individual parasite abundance, and diversity were low in the infracommunities. The recording of 3 specialist species in the tropical gar confirms that the helminth fauna of gar has an appreciable degree of specificity. This study indicates the importance of ecological determinants of richness in helminth communities of the tropical gar.  相似文献   

5.
Semiarid scrubland communities are highly dynamic in terms of their species composition, abundance, and functioning, given the drastic changes in climate among seasons. Spatiotemporal patterns of saprophagous Copestylum (Diptera: Syrphidae) communities in different cactus species richness have not yet been studied, although seasonal changes and plant species richness have been shown to strongly impact the diversity and distribution of many insect communities in scrublands. We analyzed the impact of seasonality and of habitat type (disturbed and undisturbed) on Copestylum communities reared from cactus species at the Barranca de Metztitlán Biosphere Reserve, in central Mexico, by comparing their community structure between seasons and habitats, and assessing the contribution of diversity components for the total diversity of this genus. We also measured patterns of temporal niche overlap among hoverfly species considering their breeding medium. Seasonal variation influenced Copestylum community composition most significantly. Species richness and abundance of Copestylum were higher in the rainy season. Additive partitioning of diversity showed that the main component for species richness is beta diversity between seasons. We detected high niche overlap during the dry season and low overlap during the rainy season. This study provides evidence of temporal shifts in xeric hoverfly communities and suggests that the Copestylum species partition resources over time.  相似文献   

6.
《农业工程》2021,41(6):591-596
The Physicochemical variables and Zooplankton of Asu River, Ebonyi State, Nigeria were studied monthly between October 2013 and June 2014 which covered the wet and dry seasons. The study was carried out monthly in two selected sites by collecting water samples for physiochemical analysis and zooplankton identification. Shannon-Weiner diversity and Margalef's indices were used to determine the zooplankton composition. Investigation on the physiochemical variables showed that water temperature, dissolved oxygen, total dissolved solids, pH, conductivity and carbon (iv) oxide all recorded maximum values in the dry season. The present result also showed that the river is not seriously polluted. However, only carbon (iv) oxide and nitrate varied significantly between seasons (p < 0.05). Forty two (42) zooplankton species comprising Rotifera (7 families; 23 species), Copepoda (2 families; 8 species) and Cladoceran (6 families; 11 species) were identified. Rotifera spp. were numerically dominant and the most diverse group but the crustacean, Thermocyclops oithonoides dominated the total zooplankton biomass during the study. Species abundance showed inverse relationship with species richness, Shannon-Weiner diversity and Evenness. Zooplankton abundance was at its peak in the dry season while species richness, Shannon- Weiner diversity and evenness increased from dry season to wet season.  相似文献   

7.
Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009–2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf ( 100 m) where they tended to be sparse and the slope where they were relatively abundant. The macrofauna principally comprised polychaetes with nephtyid polychaetes dominant on the shelf and maldanid polychaetes (up to 92% in relative abundance/station) dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station) dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness ( diversity) and diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and diversity was explained by confounding factors: location (east-west), sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal diversity across the depth gradient.  相似文献   

8.
Eucolaspis Sharp 1886 is a New Zealand native leaf beetle genus (Coleoptera: Chrysomelidae: Eumolpinae) with poorly described species and a complex taxonomy. Many economically important fruit crops are severely damaged by these beetles. Uncertain species taxonomy of Eucolaspis is leaving any biological research, as well as pest management, tenuous. We used morphometrics, mitochondrial DNA and male genitalia to study phylogenetic and geographic diversity of Eucolaspis in New Zealand. Freshly collected beetles from several locations across their distribution range, as well as identified voucher specimens from major museum collections were examined to test the current classification. We also considered phylogenetic relationships among New Zealand and global Eumolpinae (Coleoptera: Chyrosomelidae). We demonstrate that most of the morphological information used previously to define New Zealand Eucolaspis species is insufficient. At the same time, we show that a combination of morphological and genetic evidence supports the existence of just 3 mainland Eucolaspis lineages (putative species), and not 5 or 15, as previously reported. In addition, there may be another closely related lineage (putative species) on an offshore location (Three Kings Islands, NZ). The cladistic structure among the lineages, conferred through mitochondrial DNA data, was well supported by differences in male genitalia. We found that only a single species (lineage) infests fruit orchards in Hawke’s Bay region of New Zealand. Species-host plant associations vary among different regions.  相似文献   

9.
A study was done of the relationship between hydrographic variables and the composition, abundance, community structure and biomass spectrums of coastal phytoplankton at scales greater than 100 km on the Yucatan Peninsula (SE Gulf of Mexico). This was done during the season of greatest environmental instability in the region, the northwind season (late fall to winter). Samples were collected at stations in the west (Campeche), north (Yucatan), and east (Quintana Roo) zones of the Peninsula. Measurements were taken of temperature, salinity, dissolved oxygen, dissolved inorganic nutrients (ammonia, nitrite, nitrate and phosphate) and chlorophyll a, and samples were taken for phytoplankton analysis. The hydrographic results showed the Campeche zone as having the lowest salinity (<35 psu) values, as well as the highest inorganic nutrient and chlorophyll a values, all of which are related to continental water contributions. The Yucatan zone had the lowest temperatures and the lowest inorganic nutrient values, indicating influence from the Yucatan Current and the Gulf of Mexico. A total of 159 phytoplankton species were identified, dominated by diatoms (>80%) and dinoflagellates. Phytoplankton exhibited greater concentration, richness, equitability and diversity in Campeche, while the lowest community structure values were had in the Quintana Roo zone. The ordination analysis demonstrated that the dominant genera were the diatoms Chaetoceros, Pseudonitzschia and Thalassionema. The biomass spectrums exhibited the lowest slope in environments of higher heterogeneity, with Campeche being the most disturbed and heterogeneous zone and Quintana Roo that with the least heterogeneity.  相似文献   

10.
The present study deals with the species abundance, diversity and species richness of avian communities in the Bangalore University Campus (BUC), Bengaluru, India. One hundred and six species of birds belonging to 42 families under 68 genera were recorded. Shannon–Wiener’s and Fisher’s alpha diversities, species evenness, species richness of bird communities, number of bird species and percentage of population density of birds between various seasons in the BUC differed significantly between the study years. Of these bird species, the relative abundance (6.96 %) and species distribution ratio (0.070) of Psittacula krameri were highest, whereas relative abundance (0.04 %) and species distribution ratio (0.002) of Coracias benghalensis were lowest. The existing 32 species of flowering plants/trees belonging to 29 genera under 14 families in the campus are used for perching by birds. Moreover 29 species of flowering plants/trees belonging to 24 genera under 16 families depend on birds for pollination and/or seed dispersal. Occurrence of greater bird diversity and abundance of avian communities were recorded highest in the winter season in the BUC premises. In the different seasons, the BUC had varying community structure of birds between the study years. BUC suffers from numerous threats namely grass cutting, fire and grazing of domestic animals. Conservation methods needed for habitat management are restoration of vegetation and wetlands, and increase plant and tree diversity to protect the ecosystem of BUC habitat and to preserve its diversity of avifauna.  相似文献   

11.
We evaluated how the abundance and richness of frugivorous and nectarivorous bat species differs among three types of common agroecosystems (diversified coffee plantations, simple coffee plantations and pastures) in Veracruz, Mexico, that represent a gradient of structural and floristic complexity. Using mixed effects models we demonstrated that both the richness and the total abundance of bats was higher in the diversified coffee plantations. We detected similar patterns on comparing the abundance of the four most abundant bat species. Neither season nor the season-agroecosystem interaction had any effect on the comparisons made. Using multiple regressions we found that the richness of plants that are useful to both people and bats had the most explanatory power for the richness and total abundance of frugivorous and nectarivorous bats, as well as for the abundance of Carollia sowelli, Glossophaga soricina and Sturnira spp. Our results indicate that agroecosystems value for conservation of fruit and nectar-eating bats increases as the fruit-bearing trees increases. For the effective conservation of these guilds of bats in tropical agroecosystems, a strategy of diversification with fruit-bearing species is highly recommended; such a strategy would benefit both agricultural producers and wildlife.  相似文献   

12.
Contemporary taxonomic work on New Caledonian Eumolpinae (Chrysomelidae) has revealed their high species richness in this Western Pacific biodiversity hotspot. To estimate total species richness in this community, we used rapid DNA‐based biodiversity assessment tools, exploring mtDNA diversity and phylogenetic structure in a sample of 840 specimens across the main island. Concordance of morphospecies delimitation with units delimited by phenetic and phylogenetic algorithms revealed some 98–110 species in our sample, twice as many as currently described. Sample‐based rarefaction curves and species estimators using these species counts doubled this figure (up to 210 species), a realistic estimate considering taxonomic coverage, local endemism, and characteristics of sampling design, amongst others. New Caledonia, compared with larger tropical islands, stands out as a hotspot for Eumolpinae biodiversity. Molecular dating using either chrysomelid specific rates or tree calibration using palaeogeographical data dated the root of the ingroup tree (not necessarily a monophyletic radiation) at 38.5 Mya, implying colonizations after the Cretaceous breakage of Gondwana. Our data are compatible with the slowdown in diversification rates through time and are also consistent with recent faunal origins, possibly reflecting niche occupancy after an initial rapid diversification. Environmental factors (e.g. soil characteristics) seemingly played a role in this diversification process. © 2013 The Linnean Society of London  相似文献   

13.
 The aim of this study was to compare mycorrhizal abundance and diversity in sites with different regimes of disturbance in a tropical rain forest at Los Tuxtlas, Veracruz, Mexico. Arbuscular mycorrhizal spores were quantified at two sites: closed canopy and gaps in the forest. Data were recorded during dry, rainy, and windy ("nortes") seasons. Spores of eight Glomus species, sporocarps of three Sclerocystis species, three species of Acaulospora and two of Gigaspora were found. Significant differences in the number of species and spores were found among seasons. The highest numbers of species and spores were observed during the dry season, with a marked decrease during the rainy season. Our results show that disturbance does not but seasonality does affect abundance and richness of mycorrhizal spores in this tropical wet forest. Accepted: 11 October 1998  相似文献   

14.
Alsophila firma is a deciduous tree fern considered as an emblematic species of Mexican tropical montane cloud forest (TMCF). We studied spores diversity, structure and colonization by arbuscular mycorrhizal fungi (AMF) within the roots of the Alsophila firma in rainy and dry season. Eighteen species of the genera Acaulospora (5), Gigaspora (4), Glomus (4), Funneliformis (2), Sclerocystis (2) and Scutellospora (1) were identified. The species F. constrictum, F. geosporum, Gigaspora albida, G. decipiens, Glomus microaggregatum and Sclerocystis coremioides are reported for the first time in TMCF. The dominant genera were Funneliformis and Acaulospora. In rainy season, a higher richness (H′ t0.005(2)9?=?4.78) and evenness (E) of AMF spores was recorded, compared to the dry season. However, the degree of colonization was statistically significant higher in the dry season. This study is the first to estimate the species richness of AMF associated with the rhizosphere of a fern in Mexico as well as for A. firma.  相似文献   

15.
《Biological Control》2005,32(2):252-262
Malacorhinus irregularis Jacoby (Coleoptera: Chrysomelidae: Galerucinae: Galerucini), from Mexico is identified as a potential biological control agent for Mimosa pigra L. (Mimosaceae), a serious weed of northern Australia and Asia. The adults feed on leaves of the host, and the larvae develop on seedlings, roots, and perhaps other plant parts. The damage to the target plant is substantial, indicating that this insect could be an effective control agent. Host-specificity tests examined the suitability of seedlings and leaves for larval development, and suitability of leaves for adult feeding. In no-choice tests, no larval development occurred on any of the 81 test plant species other than M. pigra. The extent of adult feeding on the test plants was negligible in the tests using a choice-minus-control design, being less than 1% of that which occurred on M. pigra. We conclude that M. irregularis is a specialist on its host and the risk associated with its release in Australia is low. It was released in infestations of M. pigra in the Northern Territory of Australia in 2000. Establishment and abundance was monitored at one site where the number and distribution of adult beetles fluctuated widely as soil moisture conditions varied through the seasons. Adults were found for two years after release and local defoliation of plants was attributed to this species. Although only limited observations were made, adult feeding was not recorded from Neptunia major (Benth). Windler plants growing in close proximity to M. pigra, indicating specificity under field conditions.  相似文献   

16.
Native vegetation is frequently replaced by alien plants on isolated oceanic islands. The effects of such replacements by invasive plants on the diversity and temporal dynamics of island-endemic insects remain unclear. We examined flying insect communities using Malaise traps on the small island of Nishi-jima in the oceanic Ogasawara Archipelago in the northwestern Pacific. On the island, an alien tree, Casuarina equisetifolia, has become dominant, occupying 57.3?% of the vegetation area. The species richness, composition, and abundance of pollinators (bees), predators (wasps), and wood-boring beetles (cerambycids, mordellids, and elaterids) were compared in each summer season of 4?years among three vegetation types: C. equisetifolia forest, natural forest, and grassland. In the traps, 82.3?% of species captured were endemic to the archipelago. The grassland harbored the highest species richness of native bees and wasps, whereas the natural forest had the highest species richness of native wood-boring beetles. The C. equisetifolia forest had the poorest species richness for most insect groups. Principal response curves indicated that differences in species composition among the three vegetation types were consistent through time for all insect groups. Most insect species were more abundant in natural forest or grassland than in C. equisetifolia forest. Standard deviations in both the numbers of individuals and species estimated under a Bayesian framework suggested that annual fluctuations of abundance and species density were similar among vegetation types (except for elaterid abundance). Therefore, replacement by C. equisetifolia has likely altered insect species composition but has not necessarily dramatically affected the temporal dynamics of insect assemblages on the island.  相似文献   

17.
The hydraulic redistribution (HR) of deep-rooted plants significantly improves the survival of shallow-rooted shrubs and herbs in arid deserts, which subsequently maintain species diversity. This study was conducted in the Ebinur desert located in the western margin of the Gurbantonggut Desert. Isotope tracing, community investigation and comparison analysis were employed to validate the HR of Populus euphratica and to explore its effects on species richness and abundance. The results showed that, P. euphratica has HR. Shrubs and herbs that grew under the P. euphratica canopy (under community: UC) showed better growth than the ones growing outside (Outside community: OC), exhibiting significantly higher species richness and abundance in UC than OC (p<0.05) along the plant growing season. Species richness and abundance were significantly logarithmically correlated with the P. euphratica crown area in UC (R2 = 0.51 and 0.84, p<0.001). In conclusion, P. euphratica HR significantly ameliorates the water conditions of the shallow soil, which then influences the diversity assembly in arid desert communities.  相似文献   

18.
This study investigated the orchid-bee community in a conservation gradient of the high-altitude rocky fields in the state of Minas Gerais, Brazil. Sampling was performed at two sites with different anthropic influences: a disturbed area (DA), with exotic plant species, and a preserved area (PA). From September 2009 through February 2011, males of euglossine bees were sampled using aromatic bait-traps. We collected a total of 819 specimens belonging to 11 species and three genera: Euglossa Latreille, Eulaema Lepeletier, and Eufriesea Cockerell. Despite the proximity of DA and PA (about 1.2 km), differences in orchid-bee abundance and richness were observed. Higher abundance was observed in the PA (n?=?485) compared with the DA (n?=?334). Eight species were common to both sites, and only the DA showed exclusive species. The DA showed higher diversity and higher estimated species richness. Euglossa leucotricha Rebêlo & Moure was the most abundant species at both sites followed by Euglossa melanotricha Moure. Higher abundance and richness were found in the warm rainy season. This study contributes to the knowledge of the orchid-bee fauna in the rocky fields and suggests that the greater resource availability in the DA was responsible for the higher orchid-bee diversity.  相似文献   

19.
20.
Abstract The fossil history of leaf beetles (Chrysomelidae) is relatively poorly documented despite an abundance of available material. Of particular interest is the origin and radiation of the diverse tortoise beetles, a derived group within Cassidinae s.l. (=Cassidinae + Hispinae) defined by the exophagous life history and specialized morphology of the immature stages. Cassidinae is also a group with relatively few fossil records that can be assigned with any degree of certainty. Here we report two of the oldest definitive tortoise beetle fossils, Eosacantha delocranioides gen.n. et sp.n. and Denaeaspis chelonopsis gen.n. et sp.n. , from the Eocene Green River Formation (ca. 47 million years old) in northwestern Colorado, U.S.A. Owing to the fine level of preservation, many important features can be observed and are coded into the recent cladistic analysis for the subfamily. Phylogenetic analysis highlights that both genera have affinities with modern lineages, one restricted to the Old World and the other restricted to the Neotropics. Although Cassidinae as a whole extend into the Cretaceous, the available information suggests that the tortoise beetles perhaps originated and diversified during the Early Tertiary. As such, the morphological and biological transitions from the leaf‐mining hispiforms to the distinctive tortoise‐like cassidiforms, with their elaborate defensive larval shields and other unique behaviours, probably took place during the latest Paleocene or earliest Eocene. These Green River fossils are the oldest yet to document the specialized morphology associated with the transition in cassidine feeding and immature biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号