首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, the development of reflexes is often regarded as an innate process. However, recent findings show that fetuses are endowed with favorable conditions for ontogenetic development. In this article, we hypothesize that the circuitry of at least some mammalian reflexes can be self-organized from the sensory and motor interactions brought forth in a musculoskeletal system. We focus mainly on three reflexes: the myotatic reflex, the reciprocal inhibition reflex, and the reverse myotatic reflex. To test our hypothesis, we conducted a set of experiments on a simulated musculoskeletal system using pairs of agonist and antagonist muscles. The reflex connectivity is obtained by producing spontaneous motor activity in each muscle and by correlating the resulting sensor and motor signals. Our results show that, under biologically plausible conditions, the reflex circuitry thus obtained is consistent with that identified in relation to the analogous mammalian reflexes. In addition, they show that the reflex connectivity obtained depends on the morphology of the musculoskeletal system as well as on the environment that it is embedded in.  相似文献   

2.
Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization.  相似文献   

3.
Although sensitization-related changes in the neural circuitry of withdrawal reflexes inAplysia are well studied, relatively few studies address the organization of the modulatory components of sensitization. In particular, it is not known whether individual modulatory loci can simultaneously influence multiple reflex circuits. There is, however, evidence that a single modulatory transmitter, serotonin, plays a pivotal role in facilitating different reflex circuits during sensitization. Furthermore, it is known that activation of a pair of serotonergic neurons, the CB1s, produces heterosynaptic facilitation of the sensorimotor connections of one of these reflex circuits. These data together raise the possibility that the CB1s may produce sensitizing changes in the neural elements of multiple reflex systems simultaneously. In the present study, we utilized immunocytochemistry and intracellular labeling to obtain anatomical evidence of CB1's possible role in modulating multiple reflex circuits. We found that two distinct neurons satisfy previously published physiological criteria for CB1. One of these, CB1, is immunoreactive to serotonin. The second cell, here named CB2, has a different neuroanatomy and is not serotonin immunoreactive. Focusing on CB1, we found (1) profuse fine processes given off by its axons in the posterior neuropil of the cerebral ganglion, (2) extensive branching and fine processes in the pleural ganglion, and (3) a branch of CB1 that projects into the pedal ganglion. These three observations are consistent with the hypothesis that, in addition to its already established role in modulating the siphon withdrawal circuit, CB1 may also modulate synaptic connections between (1) the sensory and motor neurons of the tentacle withdrawal reflex (2) the sensory neurons and interneurons of the tail and tail-elicited siphon withdrawal reflex, and (3) the sensory and motor neurons of the tail withdrawal reflex. These observations support further physiological investigations of a possible global role of CB1 in modulating the tail and tentacle withdrawal reflexes.  相似文献   

4.
Background: Australia has the highest incidence of skin cancer of any country in the world, even though the risk of contracting the disease can be lowered considerably by engaging in appropriate sun-protective behaviours. We aimed to construct and validate a questionnaire to assess the readiness of a group of mostly young people to change their levels of sun-protective behaviour by assigning them to a stage of change based on the transtheoretical model of behaviour change. Method: A sample of 122 undergraduate students in Queensland, Australia completed the readiness to alter sun-protective behaviour questionnaire (the RASP-B, a 12-item questionnaire about their attitudes toward sun-protection), in addition to a short questionnaire about their current sun-protective behaviours. Results: A principal component analysis revealed a clear three-factor structure corresponding to the precontemplation, contemplation, and action stages of the transtheoretical model. Participants in the action stage reported engaging in significantly higher levels of sun-protective behaviour than participants in the earlier precontemplation and contemplation stages. These behaviours included avoiding exposure to direct sunlight by wearing long-sleeved clothing and remaining in the shade or indoors. Participants in the different stages reported no significant differences in the reported frequency of sunscreen use, although respondents across all three stages reported using sunscreen infrequently. Conclusion: The RASP-B requires approximately 5 min to complete, can be self-administered and has satisfactory psychometric properties, and thus has utility in primary health care settings where time and client–practitioner contact are often limited.  相似文献   

5.
Locomotion is driven by shape changes coordinated by the nervous system through time; thus, enumerating an animal''s complete repertoire of shape transitions would provide a basis for a comprehensive understanding of locomotor behaviour. Here we introduce a discrete representation of behaviour in the nematode C. elegans. At each point in time, the worm’s posture is approximated by its closest matching template from a set of 90 postures and locomotion is represented as sequences of postures. The frequency distribution of postural sequences is heavy-tailed with a core of frequent behaviours and a much larger set of rarely used behaviours. Responses to optogenetic and environmental stimuli can be quantified as changes in postural syntax: worms show different preferences for different sequences of postures drawn from the same set of templates. A discrete representation of behaviour will enable the use of methods developed for other kinds of discrete data in bioinformatics and language processing to be harnessed for the study of behaviour.  相似文献   

6.
Anatomical and physiological foundations of cerebellar information processing   总被引:11,自引:0,他引:11  
A coordinated movement is easy to recognize, but we know little about how it is achieved. In search of the neural basis of coordination, we present a model of spinocerebellar interactions in which the structure-functional organizing principle is a division of the cerebellum into discrete microcomplexes. Each microcomplex is the recipient of a specific motor error signal - that is, a signal that conveys information about an inappropriate movement. These signals are encoded by spinal reflex circuits and conveyed to the cerebellar cortex through climbing fibre afferents. This organization reveals salient features of cerebellar information processing, but also highlights the importance of systems level analysis for a fuller understanding of the neural mechanisms that underlie behaviour.  相似文献   

7.
A well known problem in the design of the control system for a swarm of robots concerns the definition of suitable individual rules that result in the desired coordinated behaviour. A possible solution to this problem is given by the automatic synthesis of the individual controllers through evolutionary or learning processes. These processes offer the possibility to freely search the space of the possible solutions for a given task, under the guidance of a user-defined utility function. Nonetheless, there exist no general principles to follow in the definition of such a utility function in order to reward coordinated group behaviours. As a consequence, task dependent functions must be devised each time a new coordination problem is under study. In this paper, we propose the use of measures developed in Information Theory as task-independent, implicit utility functions. We present two experiments in which three robots are trained to produce generic coordinated behaviours. Each robot is provided with rich sensory and motor apparatus, which can be exploited to explore the environment and to communicate with other robots. We show how coordinated behaviours can be synthesised through a simple evolutionary process. The only criteria used to evaluate the performance of the robotic group is the estimate of mutual information between the motor states of the robots.  相似文献   

8.
Recent development of optogenetics brought non‐invasive neural activation in living organisms. Transparent zebrafish larva is one of the suitable animal models for this technique, which enables us to investigate neural circuits for behaviors based on a whole individual nervous system. In this article we review our recent finding that suggests sensory‐motor coordination in larval zebrafish escape behavior. When water vibration stimulates mechanosensory Rohon‐Beard (RB) neurons, intra‐spinal reflex circuit launches contralateral trunk muscle contraction that makes rapid body curvature for turning. In addition, positional information of the stimulus is conveyed to supra‐spinal circuits, and then regulates the curvature strength for appropriate escape pathway from the threat. Sensory‐motor coordination is a fundamental feature to adapt behaviors to environment, and zebrafish larvae would be an excellent model for elucidating its neural backbones.  相似文献   

9.
Studies of habitat use by animals must consider behavioural resource requirements at different scales, which could influence the functional value of different sites. Using Cape buffalo (Syncerus caffer caffer) in the Okavango Delta, Botswana, we tested the hypotheses that behaviour affected use between and within habitats, hereafter referred to as macro- and microhabitats, respectively. We fitted GPS-enabled collars to fifteen buffalo and used the distances and turning angles between consecutive fixes to cluster the resulting data into resting, grazing, walking and relocating behaviours. Distance to water and six vegetation characteristic variables were recorded in sites used for each behaviour, except for relocating, which occurred too infrequently. We used multilevel binomial and multinomial logistic regressions to identify variables that characterised seasonally-preferred macrohabitats and microhabitats used for different behaviours. Our results showed that macrohabitat use was linked to behaviour, although this was least apparent during the rainy season, when resources were most abundant. Behaviour-related microhabitat use was less significant, but variation in forage characteristics could predict some behaviour within all macrohabitats. The variables predicting behaviour were not consistent, but resting and grazing sites were more readily identifiable than walking sites. These results highlight the significance of resting, as well as foraging, site availability in buffalo spatial processes. Our results emphasise the importance of considering several behaviours and scales in studies of habitat use to understand the links between environmental resources and animal behavioural and spatial ecology.  相似文献   

10.
There is growing recognition that rhythmic activity patterns are widespread in our brain and play an important role in all aspects of the functioning of our nervous system, from sensory integration to central processing and motor control. The study of the unique properties that enable central circuits to generate their rhythmic output in the absence of any patterned, sensory or descending, inputs, has been very rewarding in the relatively simple invertebrate preparations. The locust, specifically, is a remarkable example of an organism in which central pattern generator (CPG) networks have been suggested and studied in practically all aspects of their behaviour. Here we present an updated overview of the various rhythmic behaviours in the locust and aspects of their neural control. We focus on the fundamental concepts of multifunctional neuronal circuits, neural centre interactions and neuromodulation of CPG networks. We are certain that the very broad and solid knowledge base of locust rhythmic behaviour and pattern-generating circuits will continue to expand and further contribute to our understanding of the principles behind the functioning of the nervous system and, indeed, the brain.  相似文献   

11.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   

12.
1. Prey organisms can perceive cues to predation hazard and adopt low‐risk behaviours to increase survival. Animals with complex life cycles, such as insects, can exhibit such anti‐predatory behaviours in multiple life stages. 2. Cues to predation risk may induce ovipositing females to choose habitats with low predation risk. Cues to predation risk may also induce larvae to adopt facultative behaviours that reduce risk of predation. 3. One hypothesis postulates that anti‐predation behaviours across adult and larval stages may be negatively associated because selection for effective anti‐predator behaviour in one stage leads to reduced selection for avoidance of predators in other stages. An alternative hypothesis suggests that selection by predation favours multi‐component defences, with both avoidance of oviposition and facultative adoption of low‐risk behaviours by larvae. 4. Laboratory and field experiments were used to determine whether defensive responses of adult and larval mosquitoes are positively or negatively associated. The study tested effects of waterborne cues from predatory Toxorhynchites theobaldi on oviposition choices and larval behaviours of three of its common prey: Culex mollis, Limatus durhamii and Aedes albopictus. 5. Culex mollis shows strong anti‐predator responses in both life stages, consistent with the hypothesis of a multi‐component behavioural defence. The other two species showed no detectable responses to waterborne predator cues in either adult or larval stages. Larvae of these unresponsive species were significantly more vulnerable to this predator than was C. mollis. 6. For these mosquitoes, species appear either to have been selected for multi‐component defences against predation or to act in ways that could be called predator‐naïve.  相似文献   

13.
J C Eccles 《Acta anatomica》1982,113(4):325-339
There is an account of the basis neuronal connectivities of the spinal cord with the Sherringtonian principles of divergence and convergence. Neurones act synaptically either as excitatory or as inhibitory, depending on the specific transmitter substances liberated. Inhibitory neurones usually act either in a feedback or a feedforward manner. Voluntary movement is considered in relation to the instructions delivered to the motor cortex in order to produce the discharges down the pyramidal tract that evoke the required movement. There is an account of the three lines of evidence which indicate that in voluntary movements the primary neural event arises in discharges of neurones of the supplementary motor area (SMA). There are three main circuits from the SMA that activate subroutines concerned in the preprogramming of movements: (1) SMA to the basal ganglia, thence to the thalamus with a collateral line through the substantia nigra, thence to the association cortex; (2) SMA to cerebellar hemisphere via the pontine nuclei, thence to the nucleus dentatus, to the thalamus, to the association cortex, and (3) SMA to association cortex both frontal and parietal. According to the SMA hypothesis the liaison brain for intention is located in the SMA, there being reciprocity of informational flow from the mental events of intention to the neuronal events in the SMA.  相似文献   

14.
Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the musculoskeletal system.  相似文献   

15.

Background

Stereotypic behaviours, i.e. repetitive behaviours induced by frustration, repeated attempts to cope and/or brain dysfunction, are intriguing as they occur in a variety of domestic and captive species without any clear adaptive function. Among the different hypotheses, the coping hypothesis predicts that stereotypic behaviours provide a way for animals in unfavourable environmental conditions to adjust. As such, they are expected to have a lower physiological stress level (glucocorticoids) than non-stereotypic animals. Attempts to link stereotypic behaviours with glucocorticoids however have yielded contradictory results. Here we investigated correlates of oral and motor stereotypic behaviours and glucocorticoid levels in two large samples of domestic horses (N Study1 = 55, N Study2 = 58), kept in sub-optimal conditions (e.g. confinement, social isolation), and already known to experience poor welfare states. Each horse was observed in its box using focal sampling (study 1) and instantaneous scan sampling (study 2). Plasma samples (collected in study 1) but also non-invasive faecal samples (collected in both studies) were retrieved in order to assess cortisol levels.

Results

Results showed that 1) plasma cortisol and faecal cortisol metabolites concentrations did not differ between horses displaying stereotypic behaviours and non-stereotypic horses and 2) both oral and motor stereotypic behaviour levels did not predict plasma cortisol or faecal cortisol metabolites concentrations.

Conclusions

Cortisol measures, collected in two large samples of horses using both plasma sampling as well as faecal sampling (the latter method minimizing bias due to a non-invasive sampling procedure), therefore do not indicate that stereotypic horses cope better, at least in terms of adrenocortical activity.  相似文献   

16.
Based on the hypothesis that, in Akodon azarae, polygyny operates through female defence, we studied inter-male aggression in order to test the following predictions: during the breeding period (1) resident males are more aggressive than intruder males in the presence of females (FP), and (2) aggressive behaviour is independent of male condition (resident or intruder) in the absence of females (FA). To test our predictions, we used the resident male behavioural response towards an intruder male in relation to FP or FA. We conducted 30 encounters in FP and 27 in FA in 0.79-m2 round enclosures placed in the Espinal Reservation. Our results support the prediction that, in FP, the intensity of aggressive behaviour exhibited by males varied in relation to resident or intruder condition. Resident males showed high levels of aggression towards intruders, and intruders exhibited the greatest values of submissive behaviours with residents. In FA, the intensity of aggressive behaviour did not vary in relation to resident or intruder condition. Both resident and intruder males exhibited low aggressive behaviour and inter-male encounters resulted mainly in non interactive behaviours. Our results support the hypothesis that, in A. azarae, the polygynous mating system operates through female defence.  相似文献   

17.
Electromyography (EMG), or the study of muscle activation patterns,has long been used to infer central nervous system (CNS) controlof the musculoskeletal system and the evolution of that control.As the activation of the muscles at the level of the peripheryis a reflection of the interaction of descending influencesand local reflex control, EMG is an important tool in integratedinvestigations of the evolution of coordination in complex,musculoskeletal systems. Yet, the use of EMG as a tool to understandthe evolution of motor control has its limitations. We herereview the potential limitations and opportunities of the useof EMG in studying the evolution of motor control in vertebratesand provide original previously unpublished data to illustratethis. The relative timing of activation of a set of musclescan be used to evaluate CNS coordination of the components ina musculoskeletal system. Studies of relative timing revealtask-dependent variability in the recruitment of different populationsof muscle fibers (i.e., different fiber types) within a singlemuscle, and left–right asymmetries in activation thatneed to be taken into account in comparative studies. The magnitudeof muscle recruitment is strongly influenced by the instantaneousdemands imposed on the system, and is likely determined by localreflex-control systems. Consequently, using EMG to make meaningfulinferences about evolutionary changes in musculoskeletal controlrequires comparisons across similar functional tasks. Moreover,our data show that inferences about the evolution of motor controlare limited in their explanatory power without proper insightsinto the kinematics and dynamics of a system.  相似文献   

18.
Cell adhesion molecules belonging to the immunoglobulin superfamily (IgSF) control synaptic specificity through hetero- or homophilic interactions in different regions of the nervous system. In the developing spinal cord, monosynaptic connections of exquisite specificity form between proprioceptive sensory neurons and motor neurons, however, it is not known whether IgSF molecules participate in regulating this process. To determine whether IgSF molecules influence the establishment of synaptic specificity in sensory-motor circuits, we examined the expression of 157 IgSF genes in the developing dorsal root ganglion (DRG) and spinal cord by in situ hybridization assays. We find that many IgSF genes are expressed by sensory and motor neurons in the mouse developing DRG and spinal cord. For instance, Alcam, Mcam, and Ocam are expressed by a subset of motor neurons in the ventral spinal cord. Further analyses show that Ocam is expressed by obturator but not quadriceps motor neurons, suggesting that Ocam may regulate sensory-motor specificity in these sensory-motor reflex arcs. Electrophysiological analysis shows no obvious defects in synaptic specificity of monosynaptic sensory-motor connections involving obturator and quadriceps motor neurons in Ocam mutant mice. Since a subset of Ocam+ motor neurons also express Alcam, Alcam or other functionally redundant IgSF molecules may compensate for Ocam in controlling sensory-motor specificity. Taken together, these results reveal that IgSF molecules are broadly expressed by sensory and motor neurons during development, and that Ocam and other IgSF molecules may have redundant functions in controlling the specificity of sensory-motor circuits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号