首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regeneration of skeletal muscle after injury is limited by scar formation, slow healing time and a high recurrence rate. A therapy based on platelet-rich plasma (PRP) has become a promising lead for tendon and ligament injuries in recent years, however concerns have been raised that PRP-derived TGF-β could contribute to fibrotic remodelling in skeletal muscle after injury. Due to the lack of scientific grounds for a PRP -based muscle regeneration therapy, we have designed a study using human myogenic progenitors and evaluated the potential of PRP alone and in combination with decorin (a TGF-β inhibitor), to alter myoblast proliferation, metabolic activity, cytokine profile and expression of myogenic regulatory factors (MRFs). Advanced imaging multicolor single-cell analysis enabled us to create a valuable picture on the ratio of quiescent, activated and terminally committed myoblasts in treated versus control cell populations. Finally high-resolution confocal microscopy validated the potential of PRP and decorin to stimulate the formation of polynucleated myotubules. PRP was shown to down-regulate fibrotic cytokines, increase cell viability and proliferation, enhance the expression of MRFs, and contribute to a significant myogenic shift during differentiation. When combined with decorin further synergistc effects were identified. These results suggest that PRP could not only prevent fibrosis but could also stimulate muscle commitment, especially when combined with a TGF-β inhibitor.  相似文献   

2.
3.
Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.  相似文献   

4.
5.
6.
Mesenchymal cells transdifferentiation and extracellular matrix deposition are involved in the fibrotic process of Crohn’s disease (CD). Mesenchymal smooth muscle cells (SMCs) de-differentiation, driven by Platelet-derived growth factor (PDGF) that counteracts Transforming growth factor (TGF-β) has been studied in vascular muscle. The role of SMCs in intestinal fibrogenesis is still not clearly elucidated. Aim of the study was to evaluate the possible myogenic contribution to CD fibrotic process through the comparative analysis of histological, morphometric and molecular alterations occurring in human smooth muscle. Full thickness specimens were obtained from CD (non-involved and stenotic tracts) and healthy (control) ileum. Tissues were processed for histological and immunohistochemical (IHC) analyses and SMCs were isolated from the muscularis propria for morphofunctional and molecular (qPCR) analyses. CD stenotic ileum showed a significant increased thickness of all layers compared to CD non-involved and control ileum. IHC revealed an overexpression of α-smooth muscle actin and collagens I-III throughout all intestinal layers only in stenotic tracts. The two growth factors, PDGF and TGF-β, showed a progressive increase in expression in the muscle layer from CD non-involved to stenotic tracts. Freshly isolated SMCs presented alterations in CD non-involved tracts that progressively increased in the stenotic tracts consisting in a statistical increase in mRNA encoding for PDGF-β and collagen III, paralleled to a decrease in TGF-β and Tribbles-like protein-3 mRNA, and altered morphofunctional parameters consisting in progressive decreases in cell length and contraction to acetylcholine. These findings indicate that intrinsic myogenic alterations occur in CD ileum, that they likely precede stricture formation, and might represent suitable new targets for anti-fibrotic interventions.Key words: Fibrosis, Crohn’s disease, ileal smooth muscle cells, stricture formation, PDGF, TGF-β  相似文献   

7.
Myogenesis is a tightly regulated differentiation process during which precursor cells express in a coordinated fashion the myogenic regulatory factors, while down-regulating the satellite cell marker Pax7. CCAAT/Enhancer-binding protein β (C/EBPβ) is also expressed in satellite cells and acts to maintain the undifferentiated state by stimulating Pax7 expression and by triggering a decrease in MyoD protein expression. Herein, we show that C/EBPβ protein is rapidly down-regulated upon induction of myogenesis and this is not due to changes in Cebpb mRNA expression. Rather, loss of C/EBPβ protein is accompanied by an increase in Mdm2 expression, an E3 ubiquitin ligase. We demonstrate that Mdm2 interacts with, ubiquitinates and targets C/EBPβ for degradation by the 26 S proteasome, leading to increased MyoD expression. Knockdown of Mdm2 expression in myoblasts using a shRNA resulted in high C/EBPβ levels and a blockade of myogenesis, indicating that Mdm2 is necessary for myogenic differentiation. Primary myoblasts expressing the shMdm2 construct were unable to contribute to muscle regeneration when grafted into cardiotoxin-injured muscle. The differentiation defect imposed by loss of Mdm2 could be partially rescued by loss of C/EBPβ, suggesting that the regulation of C/EBPβ turnover is a major role for Mdm2 in myoblasts. Taken together, we provide evidence that Mdm2 regulates entry into myogenesis by targeting C/EBPβ for degradation by the 26 S proteasome.  相似文献   

8.
Glucocorticoids are the only therapy that has been demonstrated to alter the progress of Duchenne muscular dystrophy (DMD), the most common muscular dystrophy in children. However, glucocorticoids disturb skeletal muscle metabolism and hamper myogenesis and muscle regeneration. The mechanisms involved in the glucocorticoid-mediated suppression of myogenic differentiation are not fully understood. Glycogen synthase kinase-3β (GSK-3β) is considered to play a central role as a negative regulator in myogenic differentiation. Here, we showed that glucocorticoid treatment during the first 48 h in differentiation medium decreased the level of phosphorylated Ser9-GSK-3β, an inactive form of GSK-3β, suggesting that glucocorticoids affect GSK-3β activity. We then investigated whether GSK-3β inhibition could regulate glucocorticoid-mediated suppression of myogenic differentiation in vitro. Two methods were employed to inhibit GSK-3β: pharmacological inhibition with LiCl and GSK-3β gene knockdown. We found that both methods resulted in enhanced myotube formation and increased levels of muscle regulatory factors and muscle-specific protein expression. Importantly, GSK-3β inhibition attenuated glucocorticoid-induced suppression of myogenic differentiation. Collectively, these data suggest the involvement of GSK-3β in the glucocorticoid-mediated impairment of myogenic differentiation. Therefore, the inhibition of GSK-3β may be a strategy for preventing glucocorticoid-induced muscle degeneration.  相似文献   

9.
Chronic inflammation and subsequent fibrosis induced by mechanical stress play an important role in ligamentum flavum (LF) hypertrophy and degeneration in patients with lumbar spinal canal stenosis (LSCS). Angiopoietin-like protein 2 (Angptl2) is a chronic inflammatory mediator induced under various pathological conditions and increases the expression of TGF-β1, which is a well-characterized mediator in LF hypertrophy. We investigated whether Angptl2 is induced by mechanical stress, and whether it contributes to LF hypertrophy and degeneration by activating the TGF-β1 signaling cascade. In this study, we investigated human LF tissue and LF fibroblasts isolated from patients who underwent lumbar surgery. We found that Angptl2 was abundantly expressed in fibroblasts of hypertrophied LF tissues at both the mRNA and protein levels. This expression was not only positively correlated with LF thickness and degeneration but also positively correlated with lumbar segmental motion. Our in vitro experiments with fibroblasts from hypertrophied LF tissue revealed that mechanical stretching stress increases the expression and secretion of Angptl2 via activation of calcineurin/NFAT pathways. In hypertrophied LF tissue, expression of TGF-β1 mRNA was also increased and TGF-β1/Smad signaling was activated. Angptl2 expression in LF tissue was positively correlated with the expression of TGF-β1 mRNA, suggesting cooperation between Angptl2 and TGF-β1 in the pathogenesis of LF hypertrophy. In vitro experiments revealed that Angptl2 increased levels of TGF-β1 and its receptors, and also activated TGF-β1/Smad signaling. Mechanical stretching stress increased TGF-β1 mRNA expression, which was partially attenuated by treatment with a calcineurin/NFAT inhibitor or Angptl2 siRNA, indicating that induction of TGF-β1 expression by mechanical stretching stress is partially mediated by Angptl2. We conclude that expression of Angptl2 induced by mechanical stress in LF fibroblasts promotes LF tissue degeneration by activation of TGF-β1/Smad signaling, which results in LF hypertrophy in patients with LSCS.  相似文献   

10.
Myofibroblasts and extracellular matrix are important components in wound healing. Alpha-smooth muscle actin (α-SMA) is a marker of myofibroblasts. Fibrillin-1 is a major constituent of microfibrils and an extracellular-regulator of TGF-β1, an important cytokine in the transdifferentiation of resident fibroblasts into myofibroblasts. To study the correlation between changes in fibrillin-1 expression and myofibroblast differentiation, we examined alterations in fibrillin-1 and α-SMA expression in organotypic cultures of dental pulp in vitro. Extracted healthy human teeth were cut to 1-mm-thick slices and cultured for 7 days. In intact dental pulp, fibrillin-1 was broadly distributed, and α-SMA was observed in pericytes and vascular smooth muscle cells. After 7 days of culture, immunostaining for fibrillin-1 became faint concomitant with a downregulation in its mRNA levels. Furthermore, fibroblasts, odontoblasts and Schwann cells were immunoreactive for α-SMA with a significant increase in α-SMA mRNA expression. Double immunofluorescence staining was positive for pSmad2/3, central mediators of TGF-β signaling, and α-SMA. The administration of inhibitors for extracellular matrix proteases recovered fibrillin-1 immunostaining; moreover, fibroblasts lost their immunoreactivity for α-SMA along with a downregulation in α-SMA mRNA. These findings suggest that the expression of α-SMA is TGF-β1 dependent, and fibrillin-1 degradation and downregulation might be implicated in the differentiation of myofibroblasts in dental pulp wound healing.  相似文献   

11.
12.
13.
The four-herb Chinese medicine ANBP is a pulverized mixture of four herbs including Agrimonia Eupatoria (A), Nelumbo Nucifera Gaertn (N), Boswellia Carteri (B) and Pollen Typhae Angustifoliae (P). The combination of the four herbs was first described in Chinese canonical medicine about 2000 years ago for treatment of various trauma disorders, such as hemostasis, antiinflammatory, analgesia, and wound healing, etc. However, the precise mechanisms of ANBP are still unclear. In our study, using rabbit ear hypertrophic scar models of full-thickness skin defect, we showed that local ANBP treatment not only significantly enhanced wound healing by relieving inflammation, increasing formation of granulation tissue and accelerating re-epithelialization, but also reduced scar formation by decreasing collagen production, protuberant height and volume of scars, and increasing collagen maturity. We demonstrated that these effects of ANBP are associated with transforming growth factor (TGF)-β1-mediated signalling pathways through Smad-dependent pathways. ANBP treatment significantly increased expression of TGF-β1 and Smad2/3 mRNA at the early stage of wound healing, and led to markedly decrease expression of TGF-β1 and Smad2/3 compared with the control group after 14 days post-wounding. Taken together, our results defined a bidirectional regulation role of ANBP for TGF-β1/Smad pathway in promoting wound healing and alleviating scar formation, which may be an effective therapy for human wounds at the earliest stage.  相似文献   

14.
15.
16.
BackgroundThe parasite Taenia solium causes neurocysticercosis (NCC) in humans and is a common cause of adult-onset epilepsy in the developing world. Hippocampal atrophy, which occurs far from the cyst, is an emerging new complication of NCC. Evaluation of molecular pathways in brain regions close to and distant from the cyst could offer insight into this pathology.MethodsRats were inoculated intracranially with T. solium oncospheres. After 4 months, RNA was extracted from brain tissue samples in rats with NCC and uninfected controls, and cDNA was generated. Expression of 38 genes related to different molecular pathways involved in the inflammatory response and healing was assessed by RT-PCR array.ResultsInflammatory cytokines IFN-γ, TNF-α, and IL-1, together with TGF-β and ARG-1, were overexpressed in tissue close to the parasite compared to non-infected tissue. Genes for IL-1A, CSF-1, FN-1, COL-3A1, and MMP-2 were overexpressed in contralateral tissue compared to non-infected tissue.ConclusionsThe viable cysticerci in the rat model for NCC is characterized by increased expression of genes associated with a proinflammatory response and fibrosis-related proteins, which may mediate the chronic state of infection. These pathways appear to influence regions far from the cyst, which may explain the emerging association between NCC and hippocampal atrophy.  相似文献   

17.
De-differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα). Myocardin is a co-factor of serum response factor (SRF) and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.  相似文献   

18.
Adult regenerative myogenesis is central for restoring normal tissue structure and function after muscle damage. In muscle repair after injury, as in severe myopathies, damaged and necrotic fibers are removed by infiltrating inflammatory cells and then replaced by muscle stem cells or satellite cells, which will fuse to form new myofibers. Extracellular proteolysis mediated by uPA-generated plasmin plays a critical role in controlling inflammation and satellite-cell-dependent myogenesis. α-enolase has been described as plasminogen receptor in several cell types, where it acts concentrating plasmin proteolytic activity on the cell surface. In this study, we investigated whether α-enolase plasminogen receptor plays a regulatory role during the muscular repair process. Inhibitors of α-enolase/plasminogen binding: MAb11G1 (a monoclonal antibody against α-enolase) and ε-aminocaproic acid, EACA (a lysine analogue) inhibited the myogenic abilities of satellite cells-derived myoblasts. Furthermore, knockdown of α-enolase decreased myogenic fusion of myoblasts. Injured wild-type mice and dystrophic mdx mice were also treated with MAb11G1 and EACA. These treatments had negative impacts on muscle repair impairing satellite cell functions in vitro in agreement with blunted growth of new myofibers in vivo. Furthermore, both MAb11G1 and EACA treatments impaired adequate inflammatory cell infiltration and promoted extracellular matrix deposition in vivo, which resulted in persistent degeneration. These results demonstrate the novel requirement of α-enolase for restoring homeostasis of injured muscle tissue, by controlling the pericellular localization of plasmin activity.  相似文献   

19.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

20.
Transforming growth factor-β1 (TGFβ1), a major promoter of myofibroblast differentiation, induces α-smooth muscle (sn) actin, modulates the expression of adhesive receptors, and enhances the synthesis of extracellular matrix (ECM) molecules including ED-A fibronectin (FN), an isoform de novo expressed during wound healing and fibrotic changes. We report here that ED-A FN deposition precedes α-SM actin expression by fibroblasts during granulation tissue evolution in vivo and after TGFβ1 stimulation in vitro. Moreover, there is a correlation between in vitro expression of α-SM actin and ED-A FN in different fibroblastic populations. Seeding fibroblasts on ED-A FN does not elicit per se α-SM actin expression; however, incubation of fibroblasts with the anti-ED-A monoclonal antibody IST-9 specifically blocks the TGFβ1-triggered enhancement of α-SM actin and collagen type I, but not that of plasminogen activator inhibitor-1 mRNA. Interestingly, the same inhibiting action is exerted by the soluble recombinant domain ED-A, but neither of these inhibitory agents alter FN matrix assembly. Our findings indicate that ED-A–containing polymerized FN is necessary for the induction of the myofibroblastic phenotype by TGFβ1 and identify a hitherto unknown mechanism of cytokine-determined gene stimulation based on the generation of an ECM-derived permissive outside in signaling, under the control of the cytokine itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号