首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects-one produced with lentiviral constructs and the second using a virus-free plasmid-based approach-recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients.  相似文献   

2.
Our understanding of motor neuron biology in humans is derived mainly from investigation of human postmortem tissue and more indirectly from live animal models such as rodents. Thus generation of motor neurons from human embryonic stem cells and human induced pluripotent stem cells is an important new approach to model motor neuron function. To be useful models of human motor neuron function, cells generated in vitro should develop mature properties that are the hallmarks of motor neurons in vivo such as elaborated neuronal processes and mature electrophysiological characteristics. Here we have investigated changes in morphological and electrophysiological properties associated with maturation of neurons differentiated from human embryonic stem cells expressing GFP driven by a motor neuron specific reporter (Hb9::GFP) in culture. We observed maturation in cellular morphology seen as more complex neurite outgrowth and increased soma area over time. Electrophysiological changes included decreasing input resistance and increasing action potential firing frequency over 13 days in vitro. Furthermore, these human embryonic stem cell derived motor neurons acquired two physiological characteristics that are thought to underpin motor neuron integrated function in motor circuits; spike frequency adaptation and rebound action potential firing. These findings show that human embryonic stem cell derived motor neurons develop functional characteristics typical of spinal motor neurons in vivo and suggest that they are a relevant and useful platform for studying motor neuron development and function and for modeling motor neuron diseases.  相似文献   

3.
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by inactivating mutations in the Survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein expression. Humans possess a paralog gene, SMN2, which contains a splicing defect in exon 7 leading to diminished expression of full-length, fully functional SMN protein. Increasing SMN2 expression has been a focus of therapeutic development for SMA. Multiple studies have reported the efficacy of histone deacetylase inhibitors (HDACi) in this regard. However, clinical trials involving HDACi have been unsatisfactory, possibly because previous efforts to identify HDACi to treat SMA have employed non-neuronal cells as the screening platform. To address this issue, we generated an SMA-patient specific, induced pluripotent stem cell (iPSC) derived neuronal cell line that contains homogenous Tuj1 + neurons. We screened a small library of cyclic tetrapeptide HDACi using this SMA neuronal platform and discovered compounds that elevate SMN2 expression by an impressive twofold or higher. These candidates are also capable of forming gems intranuclearly in SMA neurons, demonstrating biological activity. Our study identifies new potential HDACi therapeutics for SMA screened using a disease-relevant SMA neuronal cellular model.  相似文献   

4.
5.
Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC50 1–2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.  相似文献   

6.
Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.  相似文献   

7.
We examined the electrophysiological activity of motor neurons from the mouse model of severe spinal muscular atrophy (SMA) using two different methods: whole cell patch clamp of neurons cultured from day 13 embryos; and multi-electrode recording of ventral horns in spinal cord slices from pups on post-natal days 5 and 6. We used the MED64 multi-electrode array to record electrophysiological activity from motor neurons in slices from the lumbar spinal cord of SMA pups and their unaffected littermates. Recording simultaneously from up to 32 sites across the ventral horn, we observed a significant decrease in the number of active neurons in 5–6 day-old SMA pups compared to littermates. Ventral horn activity in control pups is significantly activated by serotonin and depressed by GABA, while these agents had much less effect on SMA slices. In contrast to the large differences observed in spinal cord, neurons cultured from SMA embryos for up to 21 days showed no significant differences in electrophysiological activity compared to littermates. No differences were observed in membrane potential, frequency of spiking and synaptic activity in cells from SMA embryos compared to controls. In addition, we observed no difference in cell survival between cells from SMA embryos and their unaffected littermates. Our results represent the first report on the electrophysiology of SMN-deficient motor neurons, and suggest that motor neuron development in vitro follows a different path than in vivo development, a path in which loss of SMN expression has little effect on motor neuron function and survival.  相似文献   

8.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   

9.
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA.  相似文献   

10.
Spinal muscular atrophy (SMA) is primarily a neurodegenerative disease caused by the homozygous deletion of the survival motor neuron 1 (SMN1) gene, thereby reducing SMN protein expression. Mesenchymal stem cells (MSCs) have been implicated in the treatment of SMA. In the present study, we overexpressed exogenous SMN1 at the ribosomal DNA (rDNA) locus of induced pluripotent stem cells (iPSCs) generated from a SMA patient using an rDNA-targeting vector. The gene-targeted patient iPSCs differentiated into MSCs (SMN1-MSCs). A 2.1-fold higher expression level of SMN protein was detected in SMN1-MSCs than that detected in MSCs derived from patient iPSCs, and the results of the immunofluorescence analysis showed no difference in the quantity of SMN nuclear structures (gems) between SMN1-MSCs and MSCs derived from normal human iPSCs (h-MSCs). These findings provide a novel strategy for obtaining gene-targeted MSCs for potential clinical applications in autologous cell-based therapy.  相似文献   

11.
We have developed a new simple method to induce serotonergic neurons from embryonic stem (ES) and induced pluripotent stem cells. When ES or induced pluripotent stem cells were cultured on a thick gel layer of Matrigel, most colonies extended TuJ1-positive neurites. We found that noggin, a known antagonist of bone morphogenic protein, induces ES cells to express genes involved in serotonergic differentiation, such as Nkx2.2, Pet-1, Sonic hedgehog, tryptophan hydroxylase 2, and serotonin transporter, as well as increases high potassium-induced release of serotonin. To concentrate serotonergic neurons, ES cells carrying Pet-1-enhancer-driven enhanced green fluorescent protein were differentiated and sorted into about 80% pure cultures of serotonergic neurons. Whole cell voltage-clamp recordings showed a voltage-dependent current in dissociated neurons. This simplified method provides an alternative option for serotonergic differentiation of pluripotent stem cells and will likely contribute a deeper understanding regarding the nature of serotonergic neurons and open new therapeutic perspectives for the treatment of psychiatric disorders.  相似文献   

12.
13.
After primary infection, varicella-zoster virus (VZV) establishes latency in neurons of the dorsal root and trigeminal ganglia. Many questions concerning the mechanism of VZV pathogenesis remain unanswered, due in part to the strict host tropism and inconsistent availability of human tissue obtained from autopsies and abortions. The recent development of induced pluripotent stem (iPS) cells provides great potential for the study of many diseases. We previously generated human iPS cells from skin fibroblasts by introducing four reprogramming genes with non-integrating adenovirus. In this study, we developed a novel protocol to generate sensory neurons from iPS cells. Human iPS cells were exposed to small molecule inhibitors for 10 days, which efficiently converted pluripotent cells into neural progenitor cells (NPCs). The NPCs were then exposed for two weeks to growth factors required for their conversion to sensory neurons. The iPS cell-derived sensory neurons were characterized by immunocytochemistry, flow cytometry, RT-qPCR, and electrophysiology. After differentiation, approximately 80% of the total cell population expressed the neuron-specific protein, βIII-tubulin. Importantly, 15% of the total cell population co-expressed the markers Brn3a and peripherin, indicating that these cells are sensory neurons. These sensory neurons could be infected by both VZV and herpes simplex virus (HSV), a related alphaherpesvirus. Since limited neuronal populations are capable of supporting the entire VZV and HSV life cycles, our iPS-derived sensory neuron model may prove useful for studying alphaherpesvirus latency and reactivation.  相似文献   

14.
Mutations in the Survival of Motor Neuron (SMN) gene underlie the development of spinal muscular atrophy (SMA), which currently represents the leading genetic cause of mortality in infants and toddlers. SMA is characterized by degeneration of spinal cord motor neurons and muscle atrophy. Although SMA is often considered to be a motor neuron disease, accumulating evidence suggests that muscle cells themselves may be affected by low levels of SMN. Here, we examine satellite cells, tissue-resident stem cells that play an essential role in the growth and repair of skeletal muscle, isolated from a severe SMA mouse model (Smn(-/-); SMN2(+/+)). We found similar numbers of satellite cells in the muscles of SMA and wild-type (Smn(+/+); SMN2(+/+)) mice at postnatal day 2 (P2), and, when isolated from skeletal muscle using cell surface marker expression, these cells showed comparable survival and proliferative potential. However, SMA satellite cells differentiate abnormally, revealed by the premature expression of muscle differentiation markers, and, especially, by a reduced efficiency in forming myotubes. These phenotypes suggest a critical role of SMN protein in the intrinsic regulation of muscle differentiation and suggest that abnormal muscle development contributes to the manifestation of SMA symptoms.  相似文献   

15.
To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes, illustrating the reversibility of these synaptic defects. Deafferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention.  相似文献   

16.
Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p < 0.01, Student's t-test). Results from immunofluorescent staining showed that GFP+ cells express the motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.  相似文献   

17.
Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenerative disease, and is characterised by spinal motor neuron loss, impaired motor function and, often, premature death. Mutations and deletions in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA; however, the mechanisms underlying the selectivity of motor neuron degeneration are not well understood. Although SMA is degenerative in nature, SMN function during embryonic and early postnatal development appears to be essential for motor neuron survival in animal models and humans. Notwithstanding, how developmental defects contribute to the subversion of postnatal and adult motor function remains elusive. Here, in a Drosophila SMA model, we show that neurodevelopmental defects precede gross locomotor dysfunction in larvae. Furthermore, to specifically address the relevance of SMN during neurogenesis and in neurogenic cell types, we show that SMN knockdown using neuroblast-specific and pan-neuronal drivers, but not differentiated neuron or glial cell drivers, impairs adult motor function. Using targeted knockdown, we further restricted SMN manipulation in neuroblasts to a defined time window. Our aim was to express specifically in the neuronal progenitor cell types that have not formed synapses, and thus a time that precedes neuromuscular junction formation and maturation. By restoring SMN levels in these distinct neuronal population, we partially rescue the larval locomotor defects of Smn mutants. Finally, combinatorial SMN knockdown in immature and mature neurons synergistically enhances the locomotor and survival phenotypes. Our in-vivo study is the first to directly rescue the motor defects of an SMA model by expressing Smn in an identifiable population of Drosophila neuroblasts and developing neurons, highlighting that neuronal sensitivity to SMN loss may arise before synapse establishment and nerve cell maturation.  相似文献   

18.
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell‐mediated approaches for the treatment of SMA.  相似文献   

19.
Dosage of the survival motor neuron (SMN) protein has been directly correlated with the severity of disease in patients diagnosed with spinal muscular atrophy (SMA). It is also clear that SMA is a neurodegenerative disorder characterized by the degeneration of the alpha-motor neurons in the anterior horn of the spinal cord and atrophy of the associated skeletal muscle. What is more controversial is whether it is neuronal and/or muscle-cell-autonomous defects that are responsible for the disease per se. Although motor neuron degeneration is generally accepted as the primary event in SMA, intrinsic muscle defects in this disease have not been ruled out. To gain a better understanding of the influence of SMN protein dosage in muscle, we have generated a hypomorphic series of myoblast (C2C12) stable cell lines with variable Smn knockdown. We show that depletion of Smn in these cells resulted in a decrease in the number of nuclear 'gems' (gemini of coiled bodies), reduced proliferation with no increase in cell death, defects in myoblast fusion, and malformed myotubes. Importantly, the severity of these abnormalities is directly correlated with the decrease in Smn dosage. Taken together, our work supports the view that there is an intrinsic defect in skeletal muscle cells of SMA patients and that this defect contributes to the overall pathogenesis in this devastating disease.  相似文献   

20.
Y Shi  P Kirwan  FJ Livesey 《Nature protocols》2012,7(10):1836-1846
Efficient derivation of human cerebral neocortical neural stem cells (NSCs) and functional neurons from pluripotent stem cells (PSCs) facilitates functional studies of human cerebral cortex development, disease modeling and drug discovery. Here we provide a detailed protocol for directing the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to all classes of cortical projection neurons. We demonstrate an 80-d, three-stage process that recapitulates cortical development, in which human PSCs (hPSCs) first differentiate to cortical stem and progenitor cells that then generate cortical projection neurons in a stereotypical temporal order before maturing to actively fire action potentials, undergo synaptogenesis and form neural circuits in vitro. Methods to characterize cortical neuron identity and synapse formation are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号