首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.  相似文献   

2.
Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.Oxygen is essential for aerobic respiration, but reactive byproducts of oxygen metabolism, such as the superoxide anion, can damage cellular molecules, including proteins, DNA, and lipids (13). SOD1s (copper- and zinc-containing superoxide dismutases) provide the primary defense against superoxide damage by catalytically removing it through a disproportionation reaction (4). This reaction involves redox cycling at the copper active site (5). SOD1s require several post-translational modifications to form an active molecule. Copper and zinc are bound by the enzyme, and an intramolecular disulfide bond is formed between two conserved cysteine residues. Although the zinc ion and disulfide bond are not directly involved in the disproportionation reaction, these modifications are required for proper stability and formation of the active site (610). The presence of an intramolecular disulfide bond is intriguing, given the fact that the cytosol favors reduced thiols.The activity of SOD1s in vivo is largely controlled through the aforementioned post-translational modifications. Most of what is currently known about activation of SOD1 in vivo has emerged through studies of the bakers'' yeast Saccharomyces cerevisiae SOD1. Here insertion of the catalytic copper requires the action of the copper chaperone for SOD3 (CCS) (11). CCS physically interacts with SOD1 to deliver the copper ion and catalyze the disulfide bond formation in an oxygen-dependent manner (1215). In fact, S. cerevisiae SOD1 (ySOD1) is completely dependent on CCS for insertion of the catalytic copper and oxidation of the disulfide bond (11, 15, 16).Although ySOD1 is dependent on CCS for activity, other eukaryotic SOD1s are not. Mouse and human SOD1 (hSOD1), when expressed in CCS−/− mouse fibroblasts and in ccs1Δ yeast, still retain some SOD1 activity (1719). Moreover, the genome for the nematode Caenorhabditis elegans does not contain a CCS-like gene, yet harbors several Cu,Zn-SODs. Previous studies with C. elegans SOD-1 (wSOD-1) have shown that this SOD is activated completely independently of CCS (20). Together, these studies present a strong case for a second SOD1 activation mechanism independent of CCS.There must be inherent differences in SOD1 sequences that dictate whether the enzyme uses CCS or the CCS-independent pathway or both. Through targeted mutagenesis, sequences near the C terminus have been previously identified as being important (19). Yeast SOD1 contains dual prolines at positions 142 and 144, which when mutated in combination allow for CCS-independent activation. Conversely, hSOD1 and wSOD-1 contain non-proline residues at these positions, and if dual prolines are introduced, then CSS-independent activation is blocked (19, 20). How this pair of prolines influences SOD1 activation is not understood.It is interesting that nature has developed two activation mechanisms for such a key enzyme in oxidative stress protection, and these are not likely to be redundant. It was previously predicted that the two pathways draw upon distinct sources of copper (19), since the addition of the catalytic copper ion is limiting for enzyme activation. However, since disulfide oxidation is also limiting for enzyme activity, it is possible that the two pathways diverge at this level. In the current study, we investigate the requirements and regulation of the CCS-dependent and -independent SOD1 activation pathways. Our results strongly indicate that the two pathways do not diverge at the level of upstream copper transporter sources or the kinetics of copper incorporation into SOD1 but rather at the level of disulfide bond formation. Copper is required for CCS-mediated disulfide bond oxidation in yeast SOD1, whereas SOD1s that can be activated without CCS show no such requirement for copper in disulfide oxidation. Moreover, oxygen is required for enzyme activation through CCS, but the CCS-independent pathway is able to bypass the need for molecular oxygen. This allows for significant SOD1 activity to be found at a variety of oxygen concentrations by utilizing two activation pathways.  相似文献   

3.
Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.  相似文献   

4.
The copper chaperone for superoxide dismutase (CCS) activates the eukaryotic antioxidant enzyme copper, zinc superoxide dismutase (SOD1). The 2.9 A resolution structure of yeast SOD1 complexed with yeast CCS (yCCS) reveals that SOD1 interacts with its metallochaperone to form a complex comprising one monomer of each protein. The heterodimer interface is remarkably similar to the SOD1 and yCCS homodimer interfaces. Striking conformational rearrangements are observed in both the chaperone and target enzyme upon complex formation, and the functionally essential C-terminal domain of yCCS is well positioned to play a key role in the metal ion transfer mechanism. This domain is linked to SOD1 by an intermolecular disulfide bond that may facilitate or regulate copper delivery.  相似文献   

5.
Aggregation of copper-zinc superoxide dismutase (SOD1) is a defining feature of familial ALS caused by inherited mutations in the sod1 gene, and misfolded and aggregated forms of wild-type SOD1 are found in both sporadic and familial ALS cases. Mature SOD1 owes its exceptional stability to a number of post-translational modifications as follows: formation of the intramolecular disulfide bond, binding of copper and zinc, and dimerization. Loss of stability due to the failure to acquire one or more of these modifications is proposed to lead to aggregation in vivo. Previously, we showed that the presence of apo-, disulfide-reduced SOD1, the most immature form of SOD1, results in initiation of fibrillation of more mature forms that have an intact Cys-57–Cys-146 disulfide bond and are partially metallated. In this study, we examine the ability of each of the above post-translational modifications to modulate fibril initiation and seeded growth. Cobalt or zinc binding, despite conferring great structural stability, neither inhibits the initiation propensity of disulfide-reduced SOD1 nor consistently protects disulfide-oxidized SOD1 from being recruited into growing fibrils across wild-type and a number of ALS mutants. In contrast, reduction of the disulfide bond, known to be necessary for fibril initiation, also allows for faster recruitment during seeded amyloid growth. These results identify separate factors that differently influence seeded growth and initiation and indicate a lack of correlation between the overall thermodynamic stability of partially mature SOD1 states and their ability to initiate fibrillation or be recruited by a growing fibril.  相似文献   

6.
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.  相似文献   

7.
The maturation and activation of the anti-oxidant Cu,Zn superoxide dismutase (SOD1) are highly regulated processes that require several post-translational modifications. The maturation of SOD1 is initiated by incorporation of zinc and copper ions followed by disulfide oxidation leading to the formation of enzymatically active homodimers. Our present data indicate that homodimer formation is a regulated final step in SOD1 maturation and implicate the recently characterized copper homeostasis protein COMMD1 in this process. COMMD1 interacts with SOD1, and this interaction requires CCS-mediated copper incorporation into SOD1. COMMD1 does not regulate disulfide oxidation of SOD1 but reduces the level of SOD1 homodimers. RNAi-mediated knockdown of COMMD1 expression results in a significant induction of SOD1 activity and a consequent decrease in superoxide anion concentrations, whereas overexpression of COMMD1 exerts exactly the opposite effects. Here, we identify COMMD1 as a novel protein regulating SOD1 activation and associate COMMD1 function with the production of free radicals.  相似文献   

8.
SOD1 has to undergo several post-translational modifications before reaching its mature form. The protein requires insertion of zinc and copper atoms, followed by the formation of a conserved S-S bond between Cys-57 and Cys-146 (human numbering), which makes the protein fully active. In this report an NMR structural investigation of the reduced SH-SH form of thermostable E,Zn-as-SOD1 (E is empty; as is C6A, C111S) is reported, characterizing the protein just before the last step leading to the mature form. The structure is compared with that of the oxidized S-S form as well as with that of the yeast SOD1 complexed with its copper chaperone, CCS. Local conformational rearrangements upon disulfide bridge reduction are localized in the region near Cys-57 that is completely exposed to the solvent in the present structure, at variance with the oxidized forms. There is a local disorder around Cys-57 that may serve for protein-protein recognition and may possibly be involved in intermolecular S-S bonds in familial amyotrophic lateral sclerosis-related SOD1 mutants. The structure allows us to further discuss the copper loading mechanism in SOD1.  相似文献   

9.
Mutations in Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS) through mechanisms proposed to involve SOD1 misfolding, but the intracellular factors that modulate folding and stability of SOD1 are largely unknown. By using yeast and mammalian expression systems, we demonstrate here that SOD1 stability is governed by post-translational modification factors that target the SOD1 disulfide. Oxidation of the human SOD1 disulfide in vivo was found to involve both the copper chaperone for SOD1 (CCS) and the CCS-independent pathway for copper activation. When both copper pathways were blocked, wild type SOD1 stably accumulated in yeast cells with a reduced disulfide, whereas ALS SOD1 mutants A4V, G93A, and G37R were degraded. We describe here an unprecedented role for the thiol oxidoreductase glutaredoxin in reducing the SOD1 disulfide and destabilizing ALS mutants. Specifically, the major cytosolic glutaredoxin of yeast was seen to reduce the intramolecular disulfide of ALS SOD1 mutant A4V SOD1 in vivo and in vitro. By comparison, glutaredoxin was less reactive toward the disulfide of wild type SOD1. The apo-form of A4V SOD1 was highly reactive with glutaredoxin but not SOD1 containing both copper and zinc. Glutaredoxin therefore preferentially targets the immature form of ALS mutant SOD1 lacking metal co-factors. Overall, these studies implicate a critical balance between cellular reductants such as glutaredoxin and copper activation pathways in controlling the disulfide and stability of SOD1 in vivo.  相似文献   

10.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and enzymatically active after copper and zinc binding and intramolecular disulfide formation, but it remains unknown which step(s) in the SOD1 maturation process is important in the pathological aggregation. In this study we have shown that apoSOD1 without disulfide is the most facile state for formation of amyloid-like fibrillar aggregates. fALS mutations impair either zinc binding, disulfide formation, or both, leading to accumulation of the aggregation-prone, apo, and disulfide-reduced SOD1. Moreover, we have found that the copper chaperone for SOD1 (CCS) facilitates maturation of SOD1 and that CCS overexpression ameliorates intracellular aggregation of mutant SOD1 in vivo. Based on our in vivo and in vitro results, we propose that facilitation of post-translational modifications is a promising strategy to reduce SOD1 aggregation in the cell.  相似文献   

11.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) are a cause of a familial form of amyotrophic lateral sclerosis. Wild-type SOD1 forms a highly conserved intra-molecular disulfide bond, whereas pathological SOD1 proteins are cross-linked via intermolecular disulfide bonds and form insoluble oligomers. A thiol-disulfide status in SOD1 will thus play a regulatory role in determining its folding/misfolding pathways; however, it remains unknown how pathogenic mutations in SOD1 affect the thiol-disulfide status to facilitate the protein misfolding. Here, we show that the structural destabilization of SOD1 scrambles a disulfide bond among four Cys residues in an SOD1 molecule. The disulfide scrambling produces SOD1 monomers with distinct electrophoretic mobility and also reproduces the formation of disulfide-linked oligomers. We have also found that the familial form of amyotrophic lateral sclerosis-causing mutations facilitate the disulfide scrambling in SOD1. Based upon our results, therefore, scrambling of the conserved disulfide bond will be a key event to cause the pathological changes in disease-associated mutant SOD1 proteins.  相似文献   

12.
The eukaryotic copper,zinc superoxide dismutases are remarkably stable dimeric proteins that maintain an intrasubunit disulfide bond in the reducing environment of the cytosol and are active under a variety of stringent denaturing conditions. The structural interplay of conserved disulfide bond and metal-site occupancy in human copper,zinc superoxide dismutase (hSOD1) is of increasing interest as these post-translational modifications are known to dramatically alter the catalytic chemistry, the subcellular localization, and the susceptibility of the protein to aggregation. Using biophysical methods, we find no significant change in the gross secondary or tertiary structure of the demetallated form upon reduction of the disulfide. Interestingly, reduction does lead to a dramatic change in the quaternary structure, decreasing the monomer-to-dimer equilibrium constant by at least four orders of magnitude. This reduced form of hSOD1 is monomeric, even at concentrations well above the physiological range. Either the addition of Zn(II) or the formation of the disulfide leads to a shift in equilibrium that favors the dimeric species, even at low protein concentrations (i.e. micromolar range). We conclude that only the most immature form of hSOD1, i.e. one without any post-translational modifications, favors the monomeric state under physiological conditions. This finding provides a basis for understanding the selectivity of mitochondrial SOD1 import and may be relevant to the toxic properties of mutant forms of hSOD1 that can cause the familial form of amyotrophic lateral sclerosis.  相似文献   

13.
Endoplasmic reticulum oxidation 1 (ERO1) is a conserved eukaryotic flavin adenine nucleotide-containing enzyme that promotes disulfide bond formation by accepting electrons from reduced protein disulfide isomerase (PDI) and passing them on to molecular oxygen. Although disulfide bond formation is an essential process, recent experiments suggest a surprisingly broad tolerance to genetic manipulations that attenuate the rate of disulfide bond formation and that a hyperoxidizing ER may place stressed cells at a disadvantage. In this study, we report on the development of a high throughput in vitro assay for mammalian ERO1α activity and its application to identify small molecule inhibitors. The inhibitor EN460 (IC50, 1.9 μm) interacts selectively with the reduced, active form of ERO1α and prevents its reoxidation. Despite rapid and promiscuous reactivity with thiolates, EN460 exhibits selectivity for ERO1. This selectivity is explained by the rapid reversibility of the reaction of EN460 with unstructured thiols, in contrast to the formation of a stable bond with ERO1α followed by displacement of bound flavin adenine dinucleotide from the active site of the enzyme. Modest concentrations of EN460 and a functionally related inhibitor, QM295, promote signaling in the unfolded protein response and precondition cells against severe ER stress. Together, these observations point to the feasibility of targeting the enzymatic activity of ERO1α with small molecule inhibitors.  相似文献   

14.
The antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) has the distinction of being one of the most abundant disulfide-containing protein known in the eukaryotic cytosol; however, neither catalytic nor physiological roles for the conserved disulfide are known. Here we show that the disulfide status of Saccharomyces cerevisiae SOD1 significantly affects the monomer-dimer equilibrium, the interaction with the copper chaperone CCS, and the activity of the enzyme itself. Disulfide formation in SOD1 by O2 is slow but is greatly accelerated by the Cu-bound form of CCS (Cu-CCS) in vivo and in vitro even in the presence of excess reductants; once formed, this disulfide is kinetically stable. Biochemical assays reveal that Cu-CCS facilitates Cys oxidation and disulfide isomerization in the stepwise conversion of the immature form of the enzyme to the active state. The immature form of SOD1 is most susceptible to oxidative insult and to aggregation reminiscent of that observed in amyotrophic lateral sclerosis. Thus Cu-CCS mediation of correct disulfide formation in SOD1 is important for regulation of enzyme activity and for prevention of misfolding or aggregation.  相似文献   

15.
The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.  相似文献   

16.
Superoxide dismutase 1 (Sod1) is an important antioxidative enzyme that converts superoxide anions to hydrogen peroxide and water. Active Sod1 is a homodimer containing one zinc ion, one copper ion, and one disulfide bond per subunit. Maturation of Sod1 depends on its copper chaperone (Ccs1). Sod1 and Ccs1 are dually localized proteins that reside in the cytosol and in the intermembrane space of mitochondria. The import of Ccs1 into mitochondria depends on the mitochondrial disulfide relay system. However, the exact mechanism of this import process has been unclear. In this study we detail the import and folding pathway of Ccs1 and characterize its interaction with the oxidoreductase of the mitochondrial disulfide relay Mia40. We identify cysteines at positions 27 and 64 in domain I of Ccs1 as critical for mitochondrial import and interaction with Mia40. On interaction with Mia40, these cysteines form a structural disulfide bond that stabilizes the overall fold of domain I. Although the cysteines are essential for the accumulation of functional Ccs1 in mitochondria, they are dispensable for the enzymatic activity of cytosolic Ccs1. We propose a model in which the Mia40-mediated oxidative folding of domain I controls the cellular distribution of Ccs1 and, consequently, active Sod1.  相似文献   

17.
Since the discovery of SOD1 in 1969, there have been numerous achievements made in our understanding of the enzyme''s biochemical reactivity and its role in oxidative stress protection and as a genetic determinant in amyotrophic lateral sclerosis. Many recent advances have also been made in understanding the “activation” of SOD1, i.e. the process by which an inert polypeptide is converted to a mature active enzyme through post-translational modifications. To date, two such activation pathways have been identified: one requiring the CCS copper chaperone and one that works independently of CCS to insert copper and activate SOD1 through oxidation of an intramolecular disulfide. Depending on an organism''s lifestyle and complexity, different eukaryotes have evolved to favor one pathway over the other. Some organisms rely solely on CCS for activating SOD1, and others can only activate SOD1 independently of CCS, whereas the majority of eukaryotes appear to have evolved to use both pathways. In this minireview, we shall highlight recent advances made in understanding the mechanisms by which the CCS-dependent and CCS-independent pathways control the activity, structure, and intracellular localization of copper,zinc superoxide dismutase, with relevance to amyotrophic lateral sclerosis and an emphasis on evolutionary biology.  相似文献   

18.
The dissociation of apo- and metal-bound human copper-zinc superoxide dismutase (SOD1) dimers induced by the chaotrope guanidine hydrochloride (GdnHCl) or the reductant Tris(2-carboxyethyl)phosphine (TCEP) has been analyzed using analytical ultracentrifugation. Global fitting of sedimentation equilibrium data under native solution conditions (without GdnHCl or TCEP) demonstrate that both the apo- and metal-bound forms of SOD1 are stable dimers. Sedimentation velocity experiments show that apo-SOD1 dimers dissociate cooperatively over the range 0.5-1.0 M GdnHCl. In contrast, metal-bound SOD1 dimers possess a more compact shape and dissociate at significantly higher GdnHCl concentrations (2.0-3.0 M). Reduction of the intrasubunit disulfide bond within each SOD1 subunit by 5-10 mM TCEP promotes dissociation of apo-SOD1 dimers, whereas the metal-bound enzyme remains a stable dimer under these conditions. The Cys-57 --> Ser mutant of SOD1, a protein incapable of forming the intrasubunit disulfide bond, sediments as a monomer in the absence of metal ions and as a dimer when metals are bound. Taken together, these data indicate that the stability imparted to the human SOD1 dimer by metal binding and the formation of the intrasubunit disulfide bond are mediated by independent molecular mechanisms. By combining the sedimentation data with previous crystallographic results, a molecular explanation is provided for the existence of different SOD1 macromolecular shapes and multiple SOD1 dimeric species with different stabilities.  相似文献   

19.
The extracellular loop 3 (EL-3) of SLC4 Na+-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na+-HCO3 cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys583-Cys585 and Cys617-Cys642, respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer.  相似文献   

20.
Familial amyotrophic lateral sclerosis (FALS) is linked to over 90 point mutations in superoxide dismutase-1 (SOD1), a dimeric metalloenzyme. The postmortem FALS brain is characterized by SOD1 inclusions in the motor neurons of regions in which neuronal loss is most significant. These findings, together with animal modeling studies, suggest that aggregation of mutant SOD1 produces a pathogenic species. We demonstrate here that a mutant form of SOD1 (A4V) that is linked to a particularly aggressive form of FALS aggregates in vitro, while wild-type SOD1 (WT) is stable. Some A4V aggregates resemble amyloid pores formed by other disease-associated proteins. The WT dimer is significantly more stable than the A4V dimer, suggesting that dimer dissociation may be the required first step of aggregation. To test this hypothesis, an intersubunit disulfide bond between symmetry-related residues at the A4V dimer interface was introduced. The resultant disulfide bond (V148C-V148C') eliminated the concentration-dependent loss of enzymatic activity of A4V, stabilized the A4V dimer, and completely abolished aggregation. A drug-like molecule that could stabilize the A4V dimer could slow the onset and progression of FALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号