首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The process of connected text reading has received very little attention in contemporary cognitive psychology. This lack of attention is in parts due to a research tradition that emphasizes the role of basic lexical constituents, which can be studied in isolated words or sentences. However, this lack of attention is in parts also due to the lack of statistical analysis techniques, which accommodate interdependent time series. In this study, we investigate text reading performance with traditional and nonlinear analysis techniques and show how outcomes from multiple analyses can used to create a more detailed picture of the process of text reading. Specifically, we investigate reading performance of groups of literate adult readers that differ in reading fluency during a self-paced text reading task. Our results indicate that classical metrics of reading (such as word frequency) do not capture text reading very well, and that classical measures of reading fluency (such as average reading time) distinguish relatively poorly between participant groups. Nonlinear analyses of distribution tails and reading time fluctuations provide more fine-grained information about the reading process and reading fluency.  相似文献   

2.
3.
Studies have shown that American Sign Language (ASL) fluency has a positive impact on deaf individuals’ English reading, but the cognitive and cross-linguistic mechanisms permitting the mapping of a visual-manual language onto a sound-based language have yet to be elucidated. Fingerspelling, which represents English orthography with 26 distinct hand configurations, is an integral part of ASL and has been suggested to provide deaf bilinguals with important cross-linguistic links between sign language and orthography. Using a hierarchical multiple regression analysis, this study examined the relationship of age of ASL exposure, ASL fluency, and fingerspelling skill on reading fluency in deaf college-age bilinguals. After controlling for ASL fluency, fingerspelling skill significantly predicted reading fluency, revealing for the first-time that fingerspelling, above and beyond ASL skills, contributes to reading fluency in deaf bilinguals. We suggest that both fingerspelling—in the visual-manual modality—and reading—in the visual-orthographic modality—are mutually facilitating because they share common underlying cognitive capacities of word decoding accuracy and automaticity of word recognition. The findings provide support for the hypothesis that the development of English reading proficiency may be facilitated through strengthening of the relationship among fingerspelling, sign language, and orthographic decoding en route to reading mastery, and may also reveal optimal approaches for reading instruction for deaf and hard of hearing children.  相似文献   

4.

Purpose

This study examined the contribution of metalinguistic awareness including morphological awareness, phonological awareness and orthographical awareness to reading comprehension, and the role of reading fluency as a mediator of the effects of metalinguistic awareness on reading comprehension from grades 2 to 4.

Methods

Four hundred and fifteen elementary students in China mainland were administered a test battery that included measures of morphological awareness, phonological awareness, orthographical awareness, reading fluency, reading comprehension and IQ. Hierarchical regression and structural equation models (SEM) were used to analyze the data.

Results

Morphological awareness uniquely explained 9%, 10% and 13% variance of reading comprehension respectively from grade 2 to grade 4, however, phonological awareness and orthographical awareness did not contribute to reading comprehension; Reading fluency partially mediated the effect of morphological awareness on reading comprehension in grades 2-4.

Conclusions

These findings indicated that reading fluency and morphological awareness should be facilitated in the Chinese instruction. Morphological awareness played an important role in Chinese reading and affected reading comprehension in grades 2 to 4; Reading fluency was a significant link between morphological awareness and reading comprehension in grades 2-4.  相似文献   

5.
6.
7.
8.
There is some evidence for a role of music training in boosting phonological awareness, word segmentation, working memory, as well as reading abilities in children with typical development. Poor performance in tasks requiring temporal processing, rhythm perception and sensorimotor synchronization seems to be a crucial factor underlying dyslexia in children. Interestingly, children with dyslexia show deficits in temporal processing, both in language and in music. Within this framework, we test the hypothesis that music training, by improving temporal processing and rhythm abilities, improves phonological awareness and reading skills in children with dyslexia. The study is a prospective, multicenter, open randomized controlled trial, consisting of test, rehabilitation and re-test (ID NCT02316873). After rehabilitation, the music group (N = 24) performed better than the control group (N = 22) in tasks assessing rhythmic abilities, phonological awareness and reading skills. This is the first randomized control trial testing the effect of music training in enhancing phonological and reading abilities in children with dyslexia. The findings show that music training can modify reading and phonological abilities even when these skills are severely impaired. Through the enhancement of temporal processing and rhythmic skills, music might become an important tool in both remediation and early intervention programs.

Trial Registration

ClinicalTrials.gov NCT02316873  相似文献   

9.
The acquisition of letter-speech sound associations is one of the basic requirements for fluent reading acquisition and its failure may contribute to reading difficulties in developmental dyslexia. Here we investigated event-related potential (ERP) measures of letter-speech sound integration in 9-year-old typical and dyslexic readers and specifically test their relation to individual differences in reading fluency. We employed an audiovisual oddball paradigm in typical readers (n = 20), dysfluent (n = 18) and severely dysfluent (n = 18) dyslexic children. In one auditory and two audiovisual conditions the Dutch spoken vowels/a/and/o/were presented as standard and deviant stimuli. In audiovisual blocks, the letter ‘a’ was presented either simultaneously (AV0), or 200 ms before (AV200) vowel sound onset. Across the three children groups, vowel deviancy in auditory blocks elicited comparable mismatch negativity (MMN) and late negativity (LN) responses. In typical readers, both audiovisual conditions (AV0 and AV200) led to enhanced MMN and LN amplitudes. In both dyslexic groups, the audiovisual LN effects were mildly reduced. Most interestingly, individual differences in reading fluency were correlated with MMN latency in the AV0 condition. A further analysis revealed that this effect was driven by a short-lived MMN effect encompassing only the N1 window in severely dysfluent dyslexics versus a longer MMN effect encompassing both the N1 and P2 windows in the other two groups. Our results confirm and extend previous findings in dyslexic children by demonstrating a deficient pattern of letter-speech sound integration depending on the level of reading dysfluency. These findings underscore the importance of considering individual differences across the entire spectrum of reading skills in addition to group differences between typical and dyslexic readers.  相似文献   

10.
Differences in how writing systems represent language raise important questions about whether there could be a universal functional architecture for reading across languages. In order to study potential language differences in the neural networks that support reading skill, we collected fMRI data from readers of alphabetic (English) and morpho-syllabic (Chinese) writing systems during two reading tasks. In one, participants read short stories under conditions that approximate natural reading, and in the other, participants decided whether individual stimuli were real words or not. Prior work comparing these two writing systems has overwhelmingly used meta-linguistic tasks, generally supporting the conclusion that the reading system is organized differently for skilled readers of Chinese and English. We observed that language differences in the reading network were greatly dependent on task. In lexical decision, a pattern consistent with prior research was observed in which the Middle Frontal Gyrus (MFG) and right Fusiform Gyrus (rFFG) were more active for Chinese than for English, whereas the posterior temporal sulcus was more active for English than for Chinese. We found a very different pattern of language effects in a naturalistic reading paradigm, during which significant differences were only observed in visual regions not typically considered specific to the reading network, and the middle temporal gyrus, which is thought to be important for direct mapping of orthography to semantics. Indeed, in areas that are often discussed as supporting distinct cognitive or linguistic functions between the two languages, we observed interaction. Specifically, language differences were most pronounced in MFG and rFFG during the lexical decision task, whereas no language differences were observed in these areas during silent reading of text for comprehension.  相似文献   

11.

Background

High order cognitive processing and learning, such as reading, interact with lower-level sensory processing and learning. Previous studies have reported that visual perceptual training enlarges visual span and, consequently, improves reading speed in young and old people with amblyopia. Recently, a visual perceptual training study in Chinese-speaking children with dyslexia found that the visual texture discrimination thresholds of these children in visual perceptual training significantly correlated with their performance in Chinese character recognition, suggesting that deficits in visual perceptual processing/learning might partly underpin the difficulty in reading Chinese.

Methodology/Principal Findings

To further clarify whether visual perceptual training improves the measures of reading performance, eighteen children with dyslexia and eighteen typically developed readers that were age- and IQ-matched completed a series of reading measures before and after visual texture discrimination task (TDT) training. Prior to the TDT training, each group of children was split into two equivalent training and non-training groups in terms of all reading measures, IQ, and TDT. The results revealed that the discrimination threshold SOAs of TDT were significantly higher for the children with dyslexia than for the control children before training. Interestingly, training significantly decreased the discrimination threshold SOAs of TDT for both the typically developed readers and the children with dyslexia. More importantly, the training group with dyslexia exhibited significant enhancement in reading fluency, while the non-training group with dyslexia did not show this improvement. Additional follow-up tests showed that the improvement in reading fluency is a long-lasting effect and could be maintained for up to two months in the training group with dyslexia.

Conclusion/Significance

These results suggest that basic visual perceptual processing/learning and reading ability in Chinese might at least partially rely on overlapping mechanisms.  相似文献   

12.
13.
Quantitative in vitro autoradiography was used to examine changes in muscarinic M1/M4 and M2/M4 receptors (targeted with [3H]pirenzepine and [3H]AF-DX384 respectively), in rats treated with the typical (haloperidol) and atypical (clozapine and olanzapine) antipsychotic medications for a period of 36 days. Rats were sacrificed at either 2 h or 48 h after the last drug administration to examine immediate effects as well as the effects at 48 h after drug withdrawal. Haloperidol significantly increased [3H]pirenzepine binding in the dentate gyrus (37%) and in the CA1 region of the hippocampus (34%) in animals sacrificed 2 h after the last drug administration compared to controls. Similarly, clozapine significantly increased [3H]pirenzepine binding in dentate gyrus (29%) in rats sacrificed 2 h after the last drug administration compared to controls. Haloperidol decreased [3H]AF-DX384 binding in the basolateral nucleus of the amygdala (20%) in the rats sacrificed 48 h after the last drug administration compared to controls. These findings suggest that muscarinic receptors and limbic brain regions such as hippocampus and amygdala might represent common targets that mediate beneficial clinical effects of antipsychotic drugs.  相似文献   

14.
Abstract: The function of the phosphoinositide second messenger system was assessed in occipital, temporal, and frontal cortex obtained postmortem from subjects with bipolar affective disorder and matched controls by measuring the hydrolysis of [3H]phosphatidylinositol ([3H]PI) incubated with membrane preparations and several different stimulatory agents. Phospholipase C activity, measured in the presence of 0.1 mM Ca2+ to stimulate the enzyme, was not different in bipolar and control samples. G proteins coupled to phospholipase C were concentration-dependently activated by guanosine 5′-O-(3-thiotriphosphate) (GTPγS) and by NaF. GTPγS-stimulated [3H]PI hydrolysis was markedly lower (50%) at all tested concentrations (0.3–10 µM GTPγS) in occipital cortical membranes from bipolar compared with control subjects. Responses to GTPγS in temporal and frontal cortical membranes were similar in bipolars and controls, as were responses to NaF in all three regions. Brain lithium concentrations correlated directly with GTPγS-stimulated [3H]PI hydrolysis in bipolar occipital, but not temporal or frontal, cortex. Carbachol, histamine, trans-1-aminocyclopentyl-1,3-dicarboxylic acid, serotonin, and ATP each activated [3H]PI hydrolysis above that obtained with GTPγS alone, and these responses were similar in bipolars and controls except for deficits in the responses to carbachol and serotonin in the occipital cortex, which were equivalent to the deficit detected with GTPγS alone. Thus, among the three cortical regions examined there was a selective impairment in G protein-stimulated [3H]PI hydrolysis in occipital cortical membranes from bipolar compared with control subjects. These results directly demonstrate decreased activity of the phosphoinositide signal transduction system in specific brain regions in bipolar affective disorder.  相似文献   

15.

Objectives

Examination of sensorimotor activation alone in multiple sclerosis (MS) patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation). Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients.

Methods

13 relapsing remitting-MS patients (RRMS), 18 secondary progressive-MS patients (SPMS) and 15 healthy controls (HC) underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV) from both T1- and T2-weighted images.

Results

Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HC<RRMS<SPMS). Significant deactivation of the ipsilateral cortical sensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN), was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV.

Conclusion

In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher level of disconnection.  相似文献   

16.
17.

Background

Axonal injury after traumatic brain injury (TBI) may cause impaired sensory integration. We aim to determine the effects of childhood TBI on visual integration in relation to general neurocognitive functioning.

Methods

We compared children aged 6–13 diagnosed with TBI (n = 103; M = 1.7 years post-injury) to children with traumatic control (TC) injury (n = 44). Three TBI severity groups were distinguished: mild TBI without risk factors for complicated TBI (mildRF- TBI, n = 22), mild TBI with ≥1 risk factor (mildRF+ TBI, n = 46) or moderate/severe TBI (n = 35). An experimental paradigm measured speed and accuracy of goal-directed behavior depending on: (1) visual identification; (2) visual localization; or (3) both, measuring visual integration. Group-differences on reaction time (RT) or accuracy were tracked down to task strategy, visual processing efficiency and extra-decisional processes (e.g. response execution) using diffusion model analysis. General neurocognitive functioning was measured by a Wechsler Intelligence Scale short form.

Results

The TBI group had poorer accuracy of visual identification and visual integration than the TC group (Ps ≤ .03; ds ≤ -0.40). Analyses differentiating TBI severity revealed that visual identification accuracy was impaired in the moderate/severe TBI group (P = .05, d = -0.50) and that visual integration accuracy was impaired in the mildRF+ TBI group and moderate/severe TBI group (Ps < .02, ds ≤ -0.56). Diffusion model analyses tracked impaired visual integration accuracy down to lower visual integration efficiency in the mildRF+ TBI group and moderate/severe TBI group (Ps < .001, ds ≤ -0.73). Importantly, intelligence impairments observed in the TBI group (P = .009, d = -0.48) were statistically explained by visual integration efficiency (P = .002).

Conclusions

Children with mildRF+ TBI or moderate/severe TBI have impaired visual integration efficiency, which may contribute to poorer general neurocognitive functioning.  相似文献   

18.
19.
The ability of today''s robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors.  相似文献   

20.
Human Language and Our Reptilian Brain: The Subcortical Bases of Speech, Syntax, and Thought. Philip Lieberman. Cambridge, MA: Harvard University Press, 2000. 221 pp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号