首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute lymphoblastic leukemia (ALL), the most common form of childhood cancer, usually responds to chemotherapy but patients who develop disease relapse have a poor prognosis. New agents to treat ALL are urgently required. FTY720 is an immunosuppressive drug that has promising in vitro activity in a number of malignancies, with the proposed mechanism being the reactivation of the protein serine/threonine phosphatase, PP2A. FTY720 reduced the proliferation and viability of Ph(+) and Ph(-) ALL cell lines and patient samples with IC 50 values for viability between 5.3 to 7.9 μM. Cell death was caspase-independent with negligible activation of caspase-3 and no inhibition of FTY720-induced cell death by the caspase inhibitor Z-VAD-FMK. The cytotoxic effects of FTY720 were independent of PP2A reactivation as determined by the lack of effect of the PP2A inhibitor okadaic acid. Features of autophagy, including autophagosomes, LC3II expression and increased autophagic flux, were induced by FTY720. However the phosphorylated form of FTY720 (FTY720-P) similarly induced autophagy but not cell death. This suggests that autophagy is prosurvival in this setting, a finding supported by protection from cell death induced by the cytotoxic agent vincristine. FTY720 also induced reactive oxygen species (ROS) and the antioxidant N-acetyl-cysteine (NAC) partially reversed the cytotoxic effects, demonstrating a role for ROS generation in the cell death mechanism. FTY720 is an active drug in vitro in ALL cell lines and patient samples. Evidence supports a caspase-independent mechanism of cell death with the occurrence of autophagy and necrosis.  相似文献   

2.
《Autophagy》2013,9(7):707-715
Acute lymphoblastic leukemia (ALL), the most common form of childhood cancer, usually responds to chemotherapy but patients who develop disease relapse have a poor prognosis. New agents to treat ALL are urgently required. FTY720 is an immunosuppressive drug that has promising in vitro activity in a number of malignancies, with the proposed mechanism being the reactivation of the protein serine/threonine phosphatase, PP2A. FTY720 reduced the proliferation and viability of Ph+ and Ph- ALL cell lines and patient samples with IC50 values for viability between 5.3 to 7.9 μM. Cell death was caspase-independent with negligible activation of caspase-3 and no inhibition of FTY720-induced cell death by the caspase inhibitor Z-VAD-FMK. The cytotoxic effects of FTY720 were independent of PP2A reactivation as determined by the lack of effect of the PP2A inhibitor okadaic acid. Features of autophagy, including autophagosomes, LC3II expression and increased autophagic flux, were induced by FTY720. However the phosphorylated form of FTY720 (FTY720-P) similarly induced autophagy but not cell death. This suggests that autophagy is prosurvival in this setting, a finding supported by protection from cell death induced by the cytotoxic agent vincristine. FTY720 also induced reactive oxygen species (ROS) and the antioxidant N-acetyl-cysteine (NAC) partially reversed the cytotoxic effects, demonstrating a role for ROS generation in the cell death mechanism. FTY720 is an active drug in vitro in ALL cell lines and patient samples. Evidence supports a caspase-independent mechanism of cell death with the occurrence of autophagy and necrosis.  相似文献   

3.
The tyrosine kinase domain (TKD) mutations of receptor tyrosine kinase C-KIT are associated with a poor prognosis in acute myeloid leukemia (AML). However, the underlying mechanisms are not fully understood. We found the activity of protein phosphatase 2A (PP2A), a human tumor suppressor whose dysfunction contributes to malignant cell behavior, was significantly decreased in AML subgroups harboring C-KIT/D816V and AML cell line Kasumi-1 bearing C-KIT/N822K mutation. Primary AML cells and various AML cell lines were treated with PP2A activator FTY720. FTY720 showed a toxic effect in all leukemic cells, especially for cells harboring C-KIT/TKD mutation. Furthermore, FTY720-induced toxicity in AML leukemic cells was mediated by restoration of PP2A activity, via down-regulation of PP2A inhibitor SET, dephosporylation of PP2A-C(TYR307), and up-regulation of relevant PP2A subunit A and B55α. Our research indicates that the decreased PP2A activity in AML harboring C-KIT/TKD mutation may make the restoration of PP2A activity a novel therapy for AML patients with C-KIT/TKD mutation.  相似文献   

4.
Most patients with acute lymphoblastic leukemia (ALL) respond well to standard chemotherapy-based treatments. However a significant proportion of patients, particularly adult patients, relapse with the majority dying of leukemia. FTY720 is an immunosuppressive drug that was recently approved for the treatment of multiple sclerosis and is currently under pre-clinical investigation as a therapy for a number of hematological malignancies. Using human ALL xenografts in NOD/SCIDγc(-/-) mice, we show for the first time that three Ph(+) human ALL xenografts responded to FTY720 with an 80 ± 12% (p = 0.048) reduction in overall disease when treatment was commenced early. In contrast, treatment of mice with FTY720 did not result in reduced leukemia compared to controls using four separate human Ph(-) ALL xenografts. Although FTY720 reactivated PP2A in vitro, this reactivation was not required for death of Ph(-) ALL cells. The plasma levels of FTY720 achieved in the mice were in the high nanomolar range. However, the response seen in the Ph(+) ALL xenografts when treatment was initiated early implies that in vivo efficacy may be obtained with substantially lower drug concentrations than those required in vitro. Our data suggest that while FTY720 may have potential as a treatment for Ph(+) ALL it will not be a useful agent for the treatment of Ph(-) B-ALL.  相似文献   

5.
PP2A activator FTY720 has been shown to possess the anti-leukemic activity for chronic myelogenous leukemia (CML), however, the cell killing mechanism underlying its anti-leukemic activity has remained to be verified. We investigated the precise mechanisms underlying the apoptosis induction by FTY720, especially focusing on the roles of BH3-only proteins, and the therapeutic potency of FTY720 for CML. Enforced expression of either BCL2 or the dominant-negative protein of FADD (FADD.DN) partly protected CML cells from apoptosis by FTY720, indicating the involvement of both cell extrinsic and intrinsic apoptosis pathways. FTY720 activates pro-apoptotic BH3-only proteins: BIM, which is essential for apoptosis by BCR-ABL1 tyrosine kinase inhibitors (TKIs), and BID, which accelerates the extrinsic apoptosis pathway. Gene knockdown of either BIM or BID partly protected K562 cells from apoptosis by FTY720, but the extent of cell protection was not as much as that by overexpression of either BCL2 or FADD.DN. Moreover, knockdown of both BIM and BID did not provide additional protection compared with knockdown of only BIM or BID, indicating that BIM and BID complement each other in apoptosis by FTY720, especially when either is functionally impaired. FTY720 can overcome TKI resistance caused by ABL kinase domain mutations, dysfunction of BIM resulting from gene deletion polymorphism, and galectin-3 overexpression. In addition, ABT-263, a BH3-mimetic, significantly augmented cell death induction by FTY720 both in TKI-sensitive and -resistant leukemic cells. These results provide the rationale that FTY720, with its unique effects on BIM and BID, could lead to new therapeutic strategies for CML.  相似文献   

6.
Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases   总被引:7,自引:0,他引:7  
The immunomodulatory drug FTY720 is phosphorylated in vivo, and the resulting FTY720 phosphate as a ligand for sphingosine-1-phosphate receptors is responsible for the unique biological effects of the compound. So far, phosphorylation of FTY720 by murine sphingosine kinase (SPHK) 1a had been documented. We found that, while FTY720 is also phosphorylated by human SPHK1, the human type 2 isoform phosphorylates the drug 30-fold more efficiently, because of a lower Km of FTY720 for SPHK2. Similarly, murine SPHK2 was more efficient than SPHK1a. Among splice variants of the human SPHKs, an N-terminally extended SPHK2 isoform was even more active than SPHK2 itself. Further SPHK superfamily members, namely ceramide kinase and a "SPHK-like" protein, failed to phosphorylate sphingosine and FTY720. Thus, only SPHK1 and 2 appear to be capable of phosphorylating FTY720. Using selective assay conditions, SPHK1 and 2 activities in murine tissues were measured. While activity of SPHK2 toward sphingosine was generally lower than of SPHK1, FTY720 phosphorylation was higher under conditions favoring SPHK2. In human endothelial cells, while activity of SPHK1 toward sphingosine was 2-fold higher than of SPHK2, FTY720 phosphorylation was 7-fold faster under SPHK2 assay conditions. Finally, FTY720 was poorly phosphorylated in human blood as compared with rodent blood, in line with the low activity of SPHK1 and in particular of SPHK2 in human blood. To conclude, both SPHK1 and 2 are capable of phosphorylating FTY720, but SPHK2 is quantitatively more important than SPHK1.  相似文献   

7.
Zhang N  Qi Y  Wadham C  Wang L  Warren A  Di W  Xia P 《Autophagy》2010,6(8):1157-1167
FTY720, a sphingosine analog, is a novel immunosuppressant currently undergoing multiple clinical trials for the prevention of organ transplant rejection and treatment of various autoimmune diseases. Recent studies indicate an additional cytotoxic effect of FTY720 and its preclinical efficacy in a variety of cancer models, yet the underlying mechanisms remain unclear. We demonstrate here for the first time that FTY720 exhibits a potent, dose- and time-dependent cytotoxic effect in human ovarian cancer cells, even in the cells that are resistant to cisplatin, a commonly prescribed chemotherapeutic drug for treatment of ovarian cancer. In contrast to the previously reported cytotoxicity of FTY720 in many other cancer cell types, FTY720 kills ovarian cancer cells independent of caspase 3 activity and induces cellular swelling and cytoplasmic vacuolization with evident features of necrotic cell death. Furthermore, the presence of autophagic hallmarks, including an increased number of autophagosomes and the formation and accumulation of LC3-II, are observed in FTY720-treated cells before cell death. FTY720 treatment enhances autophagic flux as reflected in the increased LC3 turnover and p62 degradation. Notably, blockade of autophagy by either specific chemical inhibitors or siRNAs targeting Beclin 1 or LC3 resulted in aggravated necrotic cell death in response to FTY720, suggesting that FTY720-induced autophagy plays a self-protective role against its own cytotoxic effect. Thus, our findings not only demonstrate a new death pathway underlying the cytotoxic effect of FTY720, but also suggest that targeting autophagy could augment the anticancer potency, providing the framework for further development of FTY720 as a new chemotherapeutic agent for ovarian cancer treatment.  相似文献   

8.
《Autophagy》2013,9(8):1157-1167
FTY720, a sphingosine analog, is a novel immunosuppressant currently undergoing multiple clinical trials for the prevention of organ transplant rejection and treatment of various autoimmune diseases. Recent studies indicate an additional cytotoxic effect of FTY720 and its preclinical efficacy in a variety of cancer models, yet the underlying mechanisms remain unclear. We demonstrate here for the first time that FTY720 exhibits a potent, dose- and time-dependent cytotoxic effect in human ovarian cancer cells, even in the cells that are resistant to cisplatin, a commonly prescribed chemotherapeutic drug for treatment of ovarian cancer. In contrast to the previously reported cytotoxicity of FTY720 in many other cancer cell types, FTY720 kills ovarian cancer cells independent of caspase 3 activity and induces cellular swelling and cytoplasmic vacuolization with evident features of necrotic cell death. Furthermore, the presence of autophagic hallmarks, including an increased number of autophagosomes and the formation and accumulation of LC3-II, are observed in FTY720-treated cells before cell death. FTY720 treatment enhances autophagic flux as reflected in the increased LC3 turnover and p62 degradation. Notably, blockade of autophagy by either specific chemical inhibitors or siRNAs targeting Beclin 1 or LC3 resulted in aggravated necrotic cell death in response to FTY720, suggesting that FTY720-induced autophagy plays a self-protective role against its own cytotoxic effect. Thus, our findings not only demonstrate a new death pathway underlying the cytotoxic effect of FTY720, but also suggest that targeting autophagy could augment the anticancer potency, providing the framework for further development of FTY720 as a new chemotherapeutic agent for ovarian cancer treatment.  相似文献   

9.
FTY720 is a novel immunosuppressive drug derived from a metabolite from Isaria sinclairii that is known to induce apoptosis of rat splenic T cells. In this study, we examined the intracellular signaling pathway triggered by FTY720. Treatment of human Jurkat T lymphocytes with FTY720-induced apoptosis characterized by DNA fragmentation. The same treatment induced activation of protein kinases such as c-Jun NH2-terminal kinase (JNK), p38/CSBP (CSAID-binding protein), and a novel 36-kDa myelin basic protein (MBP) kinase, but not extracellular signal-regulated kinase (ERK). Pretreatment of Jurkat cells with DEVD-CHO blocked FTY720-induced DNA fragmentation as well as the activation of p38/CSBP. However, DEVD-CHO treatment failed to inhibit FTY720-induced activation of JNK and the 36-kDa MBP kinase. We have also demonstrated that activation of the ERK signaling pathway completely suppressed the FTY720-induced apoptotic process including activation of caspase 3 and activation of JNK and the 36-kDa MBP kinase. Furthermore, transient expression of constitutively active mitogen-activated protein kinase/ERK kinase (MEK) protected the cells from FTY720-induced cell death. The effect of MEK was canceled by coexpression of a mitogen-activated protein kinase phosphatase, CL100. These results indicate that JNK and p38 pathways are differentially regulated during FTY720-induced apoptosis and that activation of ERK pathway alone is sufficient to cancel the FTY720-induced death signal.  相似文献   

10.
FTY720, a metabolite from Isaria sinclairii, has been developed to be a potent immunosuppressive drug with induction of apoptosis in T cells and several cell lines. We investigated whether FTY720 induces apoptosis in human glioma cell lines, since they are relatively resistant to multiple apoptotic stimuli. In human glioma cells including T98G, FTY720 induced apoptosiswith ED50 between 1 to 10 microg/ml, while etoposidedid not induce apoptosis at the same doses. Among the caspase family proteases, mainly caspase-6 was activated during the apoptosis by FTY720 but not etoposide. In addition, FTY720 caused tyrosine dephosphorylation of FAK and did not activate a FAK-PI3-kinase survival pathway. This was confirmed also by the observation that orthovanadate prevented FTY720-induced dephosphorylation of FAK and inhibited FTY720-induced cell death. We assumed that FTY720 induced FAK dephosphorylation and cut off the FAK-PI3-kinase pathway resulting in the induction of apoptosis via caspase-6 activation in these glioma cells.  相似文献   

11.
FTY720 (2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol hydrochloride) prolongs survival of solid organ allografts in animal models. Mechanisms of FTY720 immunomodulation were studied in mice infected with lymphocytic choriomeningitis virus (LCMV) to assess T cell responses or with vesicular stomatitis virus to evaluate Ab responses. Oral FTY720 (0.3 mg/kg/day) did not affect LCMV replication and specific CTL and B cells were induced and expanded normally. Moreover, the anti-viral humoral immune responses were normal. However, FTY720 treatment showed first a shift of overall distribution of CTL from the spleen to peripheral lymph nodes and lymphocytopenia was observed. This effect was reversible within 7-21 days. Together with unimpaired T and B cell memory after FTY720 treatment, this finding rendered enhancement of lymphocyte apoptosis by FTY720 in vivo unlikely. Secondly, the delayed-type hypersensitivity reaction to a viral MHC class I-presented peptide was markedly reduced by FTY720. These results were supported by impaired circulation of LCMV specific TCR transgenic effector lymphocytes in the peripheral blood and reduced numbers of tissue infiltrating CTL in response to delayed-type hypersensitivity reaction. Thirdly, in a CD8+ T cell-mediated diabetes model in a transgenic mouse expressing the LCMV glycoprotein in the islets of the pancreas, FTY720 delayed or prevented disease by reducing islet-infiltrating CTL. Thus, FTY720 effectively reduced recirculation of CD8+ effector T cells and their recruitment to peripheral lesions without affecting the induction and expansion of immune responses in secondary lymphoid organs. These properties may offer the potential to treat ongoing organ-specific T cell-mediated immunopathologic disease.  相似文献   

12.
The present study aimed to examine the effect of FTY720, a new immunosuppressive agent, on the proliferation and apoptosis of glomerular mesangial cells (GMC), and investigate the underlying mechanisms. Cultured rat GMC were treated by FTY720, and the cell viability, apoptosis and cell cycle progression were examined. Furthermore, cell cycle related gene expression profile was analyzed by cDNA microarray, and the protein expression of cell cycle related genes as well as Bax and Bcl-2 were examined by Western blot. The results showed that FTY720 inhibited GMC proliferation and induced apoptosis of GMC in a dose- and time-dependent manner, and induced G(1) phase cell cycle arrest in GMC in a dose-dependent manner as well. cDNA microarray analysis revealed that FTY720 regulated the expression of cell cycle-related gene. Western blot analysis showed that FTY720 induced the downregulation of cyclin D1, cyclin E, CDK2, CDK4, Bcl-2 and E2F1 and the upregulation of Kip1/p27, Cip1/p21, Bax and Rb in GMC in a dose-dependent manner. These results demonstrated that FTY720 could inhibit the proliferation of GMC through inducing cell cycle arrest and apoptosis, probably via the regulation of the expression of cell cycle-related genes and Bax/Bcl-2.  相似文献   

13.
Novel immunomodulatory molecule FTY720 is a synthetic analog of myriocin, but unlike myriocin FTY720 does not inhibit serine palmitoyltransferase. Although many of the effects of FTY720 are ascribed to its phosphorylation and subsequent sphingosine 1-phosphate (S1P)-like action through S1P1,3–5 receptors, studies on modulation of intracellular balance of signaling sphingolipids by FTY720 are limited. In this study, we used stable isotope pulse labeling of human pulmonary artery endothelial cells with l-[U-13C, 15N]serine as well as in vitro enzymatic assays and liquid chromatography-tandem mass spectrometry methodology to characterize FTY720 interference with sphingolipid de novo biosynthesis. In human pulmonary artery endothelial cells, FTY720 inhibited ceramide synthases, resulting in decreased cellular levels of dihydroceramides, ceramides, sphingosine, and S1P but increased levels of dihydrosphingosine and dihydrosphingosine 1-phosphate (DHS1P). The FTY720-induced modulation of sphingolipid de novo biosynthesis was similar to that of fumonisin B1, a classical inhibitor of ceramide synthases, but differed in the efficiency to inhibit biosynthesis of short-chain versus long-chain ceramides. In vitro kinetic studies revealed that FTY720 is a competitive inhibitor of ceramide synthase 2 toward dihydrosphingosine with an apparent Ki of 2.15 μm. FTY720-induced up-regulation of DHS1P level was mediated by sphingosine kinase (SphK) 1, but not SphK2, as confirmed by experiments using SphK1/2 silencing with small interfering RNA. Our data demonstrate for the first time the ability of FTY720 to inhibit ceramide synthases and modulate the intracellular balance of signaling sphingolipids. These findings open a novel direction for therapeutic applications of FTY720 that focuses on inhibition of ceramide biosynthesis, ceramide-dependent signaling, and the up-regulation of DHS1P generation in cells.FTY7202 is a synthetic analog of sphingosine and is currently being studied as a potent immunosuppressive and immunomodulatory agent (13). FTY720-induced immunosuppression is ascribed, in part, to its protective effect on endothelial cell barrier function that results in inhibition of lymphocyte egress from lymph nodes and down-regulation of innate and adaptive immune responses (4). As endothelial cells predominantly express the sphingosine 1-phosphate 1 (S1P1) receptor and its activation initiates signaling that results in the assembly of VE-cadherin-based adherens junctions (5), it is thought that the phosphorylation of FTY720 and the binding of FTY720-P to the S1P1 receptor determine its effect on vasculature (1). Recently it became evident that the action of FTY720 is more complex as several other direct protein targets were identified. Thus, FTY720 was found to bind to and inhibit the cannabinoid CB1 receptor (6), to inhibit cytosolic phospholipase A2 (cPLA2), and to counteract ceramide 1-phosphate-induced cPLA2 activation (7). Additionally FTY720 but not FTY720-P was shown to inhibit S1P lyase (8), which degrades S1P to ethanolamine phosphate and (E)-2-hexadecenal and regulates the removal of sphingoid bases from the cumulative pool of sphingolipids. These findings characterize FTY720 as a molecule with a multitargeted mode of action whose cellular effects are complicated by its metabolic transformation to FTY720-P, a structural and functional analog of S1P.Phosphorylation of FTY720 to FTY720-P by sphingosine kinases (SphKs) is the only reported metabolic transformation of FTY720 and has been actively explored because of its link to S1P-mediated signaling (1, 2, 9, 10). Recent studies suggest that the endogenous balance between S1P and ceramide molecules regulates prosurvival and proapoptotic signaling cascades, which determine the outcome of cellular response to different stress conditions (11, 12) or the efficiency of anticancer therapy (1214). However, despite the fact that FTY720 resembles sphingosine (Sph) and is a substrate of SphK2 (1517), there are no reported studies on the effect of FTY720 on the intrinsic balance of signaling sphingolipids. Metabolic interconnections between proapoptotic (ceramides) and prosurvival (dihydrosphingosine 1-phosphate (DHS1P)) molecules are expected because it is known that fumonisin B1 (FB1), an inhibitor of (dihydro)ceramide synthases, not only blocks the formation of ceramides and up-regulates the intracellular content of dihydrosphingosine (DHSph) but also increases the cellular level of DHS1P (19, 20).In view of these considerations, it is important to know how compounds with a potential ability to interfere with the sphingolipidome turnover affect the DHS1P-S1P/ceramide balance in cells. To address this question we have investigated the effect of FTY720 on metabolic pathways leading to ceramide and sphingoid base 1-phosphate generation in human pulmonary artery endothelial cells (HPAECs) by using a stable isotope pulse labeling approach and quantitative liquid chromatography-tandem mass spectrometry of signaling sphingolipids. We demonstrate that treatment of HPAECs with FTY720 results in the inhibition of de novo ceramide formation with a concomitant increase in DHSph and DHS1P content in cells. Moreover FTY720 showed a direct inhibition of ceramide synthases in an in vitro assay, albeit it was less efficient compared with the classical inhibitor of ceramide synthases, FB1. Our present findings have identified ceramide synthase isozymes as a novel molecular target for FTY720 action, opening a new direction for its potential therapeutic application through the inhibition of ceramide biosynthesis, ceramide-dependent signaling, and the up-regulation of DHS1P generation in cells.  相似文献   

14.
FTY720 has been used to control inflammatory lesions, but the mechanisms by which the drug acts in vivo are poorly understood. Such mechanisms may result primarily from effects on lymphocyte and dendritic cell homing to lymphoid and inflammatory sites. We demonstrate that FTY720 may also act by causing the conversion of TCR-stimulated nonregulatory CD4(+) T cells to Foxp3(+)CD4(+) regulatory T cells and by enhancing their suppressive activity. In a model in which mice were ocularly infected with HSV, daily treatment with FTY720 resulted in significantly diminished ocular lesions. The treated animals showed increased frequencies of Foxp3(+) T cells in lymphoid organs and at two inflammatory sites, namely cornea and trigeminal ganglia. In a second series of experiments, immunized DO11.10RAG2(-/-) animals, normally lacking endogenous Foxp3(+) T cells, that were given FTY720 treatment developed high frequencies of Foxp3(+) regulatory T cells in lymph nodes. Some converted cells persisted in treated animals for several weeks after drug administration was discontinued. Finally, FTY720 could effectively induce Foxp3-expressing cells from Foxp3(-) cells in vitro, an effect inhibited by anti-TGF-beta or the proinflammatory cytokine IL-6. Accordingly, the anti-inflammatory effects of FTY720 could be mediated at least in part by its ability to cause the conversion of Ag-stimulated conventional T cells to become Foxp3(+) regulators. The use of FTY720 along with Ag administration could represent a useful therapeutic means to selectively expand Ag-specific regulators, which could be valuable in many clinical situations such as allotransplants, some autoimmunities, as well as with some chronic infections.  相似文献   

15.
16.
FTY720 (2-amino-[2-(4-octylphenyl) ethyl]-1,3-propanediol hydrochloride) is an immunosuppressive agent that inhibits allograft rejection. We recently demonstrated that FTY-phosphate, the active metabolite of FTY720, acts as a full agonist for sphingosine-1-phosphate (S1P) receptors. Furthermore, activation of S1P receptors with their natural ligand, S1P, as well as pharmacological ligands leads to lymphopenia, probably due to sequestration of lymphocytes in secondary lymphoid organs. In the present study we used a local Ag-challenged mouse model to examine the effects of FTY720 on T cell activation in the draining lymph node (DLN) and on the release of activated T cells to the peripheral blood compartment. We showed that the number of Ag-activated CD4(+) T cells in the DLN after injection of Ag and CFA into a footpad was dramatically reduced after FTY720 treatment. However, T cell proliferation, both in vitro and in vivo, was not impaired by FTY720. Our results suggest that the reduced efficiency of T cell responses in the DLN in response to a local Ag is probably due to a defective recirculation of naive T cells caused by FTY720 treatment. Furthermore, we found that the numbers of naive and Ag-activated CD4(+) T cells in the peripheral blood of Ag-challenged mice were equally reduced with FTY720 treatment, suggesting that both T cell subsets are sequestered in the DLNs. Thus, FTY720 induces immunosuppression through inhibition of both the recirculation of naive T cells and the release of Ag-activated T cells from the DLN to lymph and to the blood compartment.  相似文献   

17.
Dr. Robert K. Yu’s research showed for the first time that the composition of glycosphingolipids is tightly regulated during embryo development. Studies in our group showed that the glycosphingolipid precursor ceramide is also critical for stem cell differentiation and apoptosis. Our new studies suggest that ceramide and its derivative, sphingosine-1-phosphate (S1P), act synergistically on embryonic stem (ES) cell differentiation. When using neural precursor cells (NPCs) derived from ES cells for transplantation, residual pluripotent stem (rPS) cells pose a significant risk of tumor formation after stem cell transplantation. We show here that rPS cells did not express the S1P receptor S1P1, which left them vulnerable to ceramide or ceramide analog (N-oleoyl serinol or S18)-induced apoptosis. In contrast, ES cell-derived NPCs expressed S1P1 and were protected in the presence of S1P or its pro-drug analog FTY720. Consistent with previous studies, FTY720-treated NPCs differentiated predominantly toward oligodendroglial lineage as tested by the expression of the oligodendrocyte precursor cell (OPC) markers Olig2 and O4. As the consequence, a combined administration of S18 and FTY720 to differentiating ES cells eliminated rPS cells and promoted oligodendroglial differentiation. In addition, we show that this combination promoted differentiation of ES cell-derived NPCs toward oligodendroglial lineage in vivo after transplantation into mouse brain.  相似文献   

18.
FTY720, a sphingosine analog, is in clinical trials as an immunomodulator. The biological effects of FTY720 are believed to occur after its metabolism to FTY720 phosphate. However, very little is known about whether FTY720 can interact with and modulate the activity of other enzymes of sphingolipid metabolism. We examined the ability of FTY720 to modulate de novo ceramide synthesis. In mammals, ceramide is synthesized by a family of six ceramide synthases, each of which utilizes a restricted subset of acyl-CoAs. We show that FTY720 inhibits ceramide synthase activity in vitro by noncompetitive inhibition toward acyl-CoA and uncompetitive inhibition toward sphinganine; surprisingly, the efficacy of inhibition depends on the acyl-CoA chain length. In cultured cells, FTY720 has a more complex effect, with ceramide synthesis inhibited at high (500 nm to 5 μm) but not low (<200 nm) sphinganine concentrations, consistent with FTY720 acting as an uncompetitive inhibitor toward sphinganine. Finally, electrospray ionization-tandem mass spectrometry demonstrated, unexpectedly, elevated levels of ceramide, sphingomyelin, and hexosylceramides after incubation with FTY720. Our data suggest a novel mechanism by which FTY720 might mediate some of its biological effects, which may be of mechanistic significance for understanding its mode of action.FTY720 (2-amino-(2-2-[4-octylphenyl]ethyl)propane 1,3-diol hydrochloride), also known as Fingolimod, is an immunosuppressant drug currently being tested in clinical trials for organ transplantation and autoimmune diseases such as multiple sclerosis (1). FTY720 is a structural analog of sphingosine, a key biosynthetic intermediate in sphingolipid (SL)2 metabolism (see Fig. 1). In vivo, FTY720 is rapidly phosphorylated by sphingosine kinase 2 (2, 3) to form FTY720 phosphate (FTY720-P), an analog of sphingosine 1-phosphate (S1P) (see Fig. 1A). FTY720-P binds to S1P receptors (S1PRs) (4, 5) and thereby induces a variety of phenomena such as T-lymphocyte migration from lymphoid organs (69); accordingly, FTY720 treatment results in lymphopenia as lymphocytes (especially T-cells) become sequestered inside lymphoid organs (1012). The ability of FTY720 to sequester lymphocytes has stimulated its use in treatment of allograft rejection and autoimmune diseases (13), and FTY720 is currently under phase III clinical trials for treatment of relapsing-remitting multiple sclerosis (14).Open in a separate windowFIGURE 1.SL structure and metabolism. A, structures of SLs and SL analogs used in this study. B, metabolic inter-relationships between SLs and the metabolism of FTY720. The enzymes are denoted in italics. LPP3, lipid phosphate phosphatase 3; LPP1α, lipid phosphate phosphatase 1α.Apart from the binding of FTY720-P to S1PRs, the ability of FTY720 to inhibit S1P lyase (15) (see Fig. 1B), and its inhibitory effect on cytosolic phospholipase A2 (16), whose activity can be modulated by ceramide 1-phosphate (17), little is known about whether FTY720 or FTY720-P can modulate the activity of other enzymes of SL metabolism. Because FTY720 is an analog of sphingosine, one of the two substrates of ceramide synthase (CerS) (see Fig. 1), we now examine whether FTY720 can modulate CerS activity. CerS utilizes fatty acyl-CoAs to N-acylate sphingoid long chain bases. Six CerS exist in mammals, each of which uses a restricted subset of acyl-CoAs (1823). We demonstrate that FTY720 inhibits CerS activity and that the extent of inhibition varies according to the acyl chain length of the acyl-CoA substrate. Surprisingly, FTY720 inhibits CerS activity toward acyl-CoA via noncompetitive inhibition and toward sphinganine via uncompetitive inhibition. Finally, the mode of interaction of FTY720 with CerS in cultured cells depends on the amount of available sphinganine. Together, we show that FTY720 modulates ceramide synthesis, which may be of relevance for understanding its biological effects in vivo and its role in immunomodulation.  相似文献   

19.
FTY720 is a novel immunomodulatory drug efficacious in the treatment of multiple sclerosis. The drug is converted in vivo to the monophosphate, FTY720-P, by sphingosine kinase 2. This conversion is incomplete, suggesting opposing actions of kinase and phosphatase activities. To address which of the known lipid phosphatases might dephosphorylate FTY720-P, we overexpressed the broad specificity lipid phosphatases LPP1-3, and the specific S1P phosphatases (SPP1 and 2) in HEK293 cells, and performed in vitro assays using lysates of transfected cells. Among LPPs, only LPP3 was able to dephosphorylate FTY720-P; among SPPs, only SPP1 showed activity against FTY720-P. On intact cells, LPP3 acted as an ecto-phosphatase or FTY720-P, thus representing the major phosphatase involved in the equilibrium between FTY720 and FTY720-P observed in vivo.  相似文献   

20.
Endogenous stem cell recruitment to the site of skeletal injury is key to enhanced osseous remodeling and neovascularization. To this end, this study utilized a novel bone allograft coating of poly(lactic-co-glycolic acid) (PLAGA) to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors, from calvarial allografts. Uncoated allografts, vehicle-coated, low dose FTY720 in PLAGA (1:200 w:w) and high dose FTY720 in PLAGA (1:40) were implanted into critical size calvarial bone defects. The ability of local FTY720 delivery to promote angiogenesis, maximize osteoinductivity and improve allograft incorporation by recruitment of bone progenitor cells from surrounding soft tissues and microcirculation was evaluated. FTY720 bioactivity after encapsulation and release was confirmed with sphingosine kinase 2 assays. HPLC-MS quantified about 50% loaded FTY720 release of the total encapsulated drug (4.5 μg) after 5 days. Following 2 weeks of defect healing, FTY720 delivery led to statistically significant increases in bone volumes compared to controls, with total bone volume increases for uncoated, coated, low FTY720 and high FTY720 of 5.98, 3.38, 7.2 and 8.9 mm3, respectively. The rate and extent of enhanced bone growth persisted through week 4 but, by week 8, increases in bone formation in FTY720 groups were no longer statistically significant. However, micro-computed tomography (microCT) of contrast enhanced vascular ingrowth (MICROFIL?) and histological analysis showed enhanced integration as well as directed bone growth in both high and low dose FTY720 groups compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号