首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The actinomycete Amycolatopsis mediterranei produces the commercially and medically important polyketide antibiotic rifamycin, which is widely used against mycobacterial infections. The rifamycin biosynthetic (rif) gene cluster has been isolated, cloned and characterized from A. mediterranei S699 and A. mediterranei LBGA 3136. However, there are several other strains of A. mediterranei which also produce rifamycins. In order to detect the variability in the rif gene cluster among these strains, several strains were screened by PCR amplification using oligonucleotide primers based on the published DNA sequence of the rif gene cluster and by using dEBS II (second component of deoxy-erythronolide biosynthase gene) as a gene probe. Out of eight strains of A. mediterranei selected for the study, seven of them showed the expected amplification of the DNA fragments whereas the amplified DNA pattern was different in strain A. mediterranei DSM 46095. This strain also showed striking differences in the banding pattern obtained after hybridization of its genomic DNA against the dEBS II probe. Initial cloning and characterization of the 4-kb DNA fragment from the strain DSM 46095, representing a part of the putative rifamycin biosynthetic cluster, revealed nearly 10% and 8% differences in the DNA and amino acid sequence, respectively, as compared to that of A. mediterranei S699 and A. mediterranei LBGA 3136. The entire rif gene cluster was later cloned on two cosmids from A. mediterranei DSM 46095. Based on the partial sequence analysis of the cluster and sequence comparison with the published sequence, it was deduced that among eight strains of A. mediterranei, only A. mediterranei DSM 46095 carries a novel rifamycin biosynthetic gene cluster.  相似文献   

2.
3.
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis.  相似文献   

4.
《Gene》1998,216(2):255-265
Five clustered polyketide synthase (PKS) genes, rifArifE, involved in rifamycin (Rf) biosynthesis in Amycolatopsis mediterranei S699 have been cloned and sequenced (August, P.R. et al., 1998. Chem. Biol. 5, 69–79). The five multifunctional polypeptides constitute a type I modular PKS that contains ten modules, each responsible for a specific round of polyketide chain elongation. Sequence comparisons of the Rf PKS proteins with other prokaryotic modular PKSs elucidated the regions that have an important role in enzyme activity and specificity. The β-ketoacyl:acyl carrier protein synthase (KS) domains show the highest degree of similarity between themselves (86–90%) and to other PKSs (78–85%) among all the constituent domains. Both malonyl-coenzyme A (MCoA) and methylmalonyl-coenzyme A (mMCoA) are substrates for chain elongation steps carried out by the Rf PKS. Since acyltransferase (AT) domains of modular PKSs can distinguish between these two substrates, comparison of the sequence of all ten AT domains of the Rf PKS with those found in the erythromycin (Er) (Donadio, S. and Katz, L., 1992. Gene 111, 51–60) and rapamycin (Rp) (Haydock, S. et al., 1995. FEBS Lett. 374, 246–248) PKSs revealed that the AT domains in module 2 of RifA and module 9 of RifE are specific for MCoA, whereas the other eight modules specify mMCoA. Dehydration of the β-hydroxyacylthioester intermediates should occur during the reactions catalysed by module 4 of RifB and modules 9 and 10 of RifE, yet only the active site region of module 4 conforms closely to the dehydratase (DH) motifs in the Er and Rp PKSs. The DH domains of modules 9 and 10 diverge significantly from the consensus sequence defined by the Er and Rp PKSs, except for the active site His residues. Deletions in the DH active sites of module 1 in RifA and module 5 in RifB and in the N- and C-terminal regions of module 8 of RifD should inactivate these domains, and module 2 of RifA lacks a DH domain, all of which are consistent with the proposed biosynthesis of Rf. In contrast, module 6 of RifB and module 7 of RifC appear to contain intact DH domains even though DH activity is not apparently required in these modules. Module 2 of RifA lacks a β-ketoacyl:acyl carrier protein reductase (KR) domain and the one in module 3 has an apparently inactive NADPH binding motif, similar to one found in the Er PKS, while the other eight KR domains of the Rf PKS should be functional. These observations are consistent with biosynthetic predictions. All the acyl carrier protein (ACP) domains, while clearly functional, nevertheless have active site signature sequences distinctive from those of the Er and Rp PKSs. Module 2 of RifA has only the core domains (KS, AT and ACP). The starter unit ligase (SUL) and ACP domains present in the N-terminus of RifA direct the selection and loading of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA), onto the PKS. AHBA is made by the products of several other genes in the Rf cluster through a variant of the shikimate pathway (August, P.R. et al., inter alia). RifF, produced by the gene immediately downstream of rifE, is thought to catalyse the intramolecular cyclization of the PKS product, thereby forming the ansamacrolide precursor of Rf B.  相似文献   

5.

Ten new pentangular polyphenols, namely amexanthomycins A–J (110) were isolated from the strain Amycolatopsis mediterranei S699∆rifA constructed by deleting the polyketide synthase genes responsible for the biosynthesis of rifamycins. Their structures were elucidated on the basis of 1D and 2D NMR spectroscopic data and high-resolution ESIMS. Amexanthomycins A–C (13) showed inhibitory activity against human DNA topoisomerases.

  相似文献   

6.
The genome of Amycolatopsis mediterranei S699 was resequenced and assembled de novo. By comparing the sequences of S699 previously released and that of A. mediterranei U32, about 10 kb of major indels was found to differ between the two S699 genomes, and the differences are likely attributable to their different assembly strategies.  相似文献   

7.
Five actinophages highly specific for Streptomyces mediterranei were isolated from lysed broth cultures. Studies were performed on the effect of plating conditions on plaque formation. The development of phage-resistant strains of S. mediterranei not only eliminated the phage but also significantly increased rifamycin yields. The phage-resistant cultures proved to be more unstable than the original sensitive strain. Maintenance of the cultures as frozen vegetative mycelium assured culture stability and reproducibility of the results. Strict aseptic precautions throughout the laboratories and fermentation areas did not eliminate the danger of phage infection; effective control was obtained only with the introduction of resistant strains. S. mediterranei phages proved to be highly specific for calcium as an adsorption cofactor; addition of calcium-sequestering agents to sensitive mycelium completely prevented its lysis by the phage. The resistant strains developed were capable of adsorbing the phage and of releasing it without multiplication upon aging of the mycelium. No marked morphological, cultural, or biochemical differences were found among the various phage-resistant strains.  相似文献   

8.
The methylmalonyl coenzyme A (methylmalonyl-CoA)-specific acyltransferase (AT) domains of modules 1 and 2 of the 6-deoxyerythronolide B synthase (DEBS1) of Saccharopolyspora erythraea ER720 were replaced with three heterologous AT domains that are believed, based on sequence comparisons, to be specific for malonyl-CoA. The three substituted AT domains were "Hyg" AT2 from module 2 of a type I polyketide synthase (PKS)-like gene cluster isolated from the rapamycin producer Streptomyces hygroscopicus ATCC 29253, "Ven" AT isolated from a PKS-like gene cluster of the pikromycin producer Streptomyces venezuelae ATCC 15439, and RAPS AT14 from module 14 of the rapamycin PKS gene cluster of S. hygroscopicus ATCC 29253. These changes led to the production of novel erythromycin derivatives by the engineered strains of S. erythraea ER720. Specifically, 12-desmethyl-12-deoxyerythromycin A, which lacks the methyl group at C-12 of the macrolactone ring, was produced by the strains in which the resident AT1 domain was replaced, and 10-desmethylerythromycin A and 10-desmethyl-12-deoxyerythromycin A, both of which lack the methyl group at C-10 of the macrolactone ring, were produced by the recombinant strains in which the resident AT2 domain was replaced. All of the novel erythromycin derivatives exhibited antibiotic activity against Staphylococcus aureus. The production of the erythromycin derivatives through AT replacements confirms the computer predicted substrate specificities of "Hyg" AT2 and "Ven" AT and the substrate specificity of RAPS AT14 deduced from the structure of rapamycin. Moreover, these experiments demonstrate that at least some AT domains of the complete 6-deoxyerythronolide B synthase of S. erythraea can be replaced by functionally related domains from different organisms to make novel, bioactive compounds.  相似文献   

9.
Five actinophages highly specific for Streptomyces mediterranei were isolated from lysed broth cultures. Studies were performed on the effect of plating conditions on plaque formation. The development of phage-resistant strains of S. mediterranei not only eliminated the phage but also significantly increased rifamycin yields. The phage-resistant cultures proved to be more unstable than the original sensitive strain. Maintenance of the cultures as frozen vegetative mycelium assured culture stability and reproducibility of the results. Strict aseptic precautions throughout the laboratories and fermentation areas did not eliminate the danger of phage infection; effective control was obtained only with the introduction of resistant strains. S. mediterranei phages proved to be highly specific for calcium as an adsorption cofactor; addition of calcium-sequestering agents to sensitive mycelium completely prevented its lysis by the phage. The resistant strains developed were capable of adsorbing the phage and of releasing it without multiplication upon aging of the mycelium. No marked morphological, cultural, or biochemical differences were found among the various phage-resistant strains.  相似文献   

10.
Amycolatopsis, genus of a rare actinomycete, produces many clinically important antibiotics, such as rifamycin and vancomycin. Although GlnR of Amycolatopsis mediterranei is a direct activator of the glnA gene expression, the production of GlnR does not linearly correlate with the expression of glnA under different nitrogen conditions. Moreover, A. mediterranei GlnR apparently inhibits rifamycin biosynthesis in the absence of nitrate but is indispensable for the nitrate-stimulating effect for its production, which leads to the hyper-production of rifamycin. When glnR of A. mediterranei was introduced into its phylogenetically related organism, Streptomyces coelicolor, we found that GlnR widely participated in the host strain’s secondary metabolism, resemblance to the phenotypes of a unique S. coelicolor glnR mutant, FS2. In contrast, absence or increment in copy number of the native S. coelicolor glnR did not result in a detectable pleiotrophic effect. We thus suggest that GlnR is a global regulator with a dual functional impact upon nitrogen metabolism and related antibiotics production.  相似文献   

11.
Cassette replacement of acyltransferase (AT) domains in 6-deoxyerythronolide B synthase (DEBS) with heterologous AT domains with different substrate specificities usually yields the predicted polyketide analogues. As reported here, however, several AT replacements in module 4 of DEBS failed to produce detectable polyketide under standard conditions, suggesting that module 4 is sensitive to perturbation of the protein structure when the AT is replaced. Alignments between different modular polyketide synthase AT domains and the Escherichia coli fatty acid synthase transacylase crystal structure were used to select motifs within the AT domain of module 4 to re-engineer its substrate selectivity and minimize potential alterations to protein folding. Three distinct primary regions of AT4 believed to confer specificity for methylmalonyl-CoA were mutated into the sequence seen in malonyl-CoA-specific domains. Each individual mutation as well as the three in combination resulted in functional DEBSs that produced mixtures of the natural polyketide, 6-deoxyerythronolide B, and the desired novel analogue, 6-desmethyl-6-deoxyerythronolide B. Production of the latter compound indicates that the identified sequence motifs do contribute to AT specificity and that DEBS can process a polyketide chain incorporating a malonate unit at module 4. This is the first example in which the extender unit specificity of a PKS module has been altered by site-specific mutation and provides a useful alternate method for engineering AT specificity in the combinatorial biosynthesis of polyketides.  相似文献   

12.
Phylogenetic analysis of the ketosynthase (KS) gene sequences of marine sponge-derived Salinispora strains of actinobacteria indicated that the polyketide synthase (PKS) gene sequence most closely related to that of Salinispora was the rifamycin B synthase of Amycolatopsis mediterranei. This result was not expected from taxonomic species tree phylogenetics using 16S rRNA sequences. From the PKS sequence data generated from our sponge-derived Salinispora strains, we predicted that such strains might synthesize rifamycin-like compounds. Liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis was applied to one sponge-derived Salinispora strain to test the hypothesis of rifamycin synthesis. The analysis reported here demonstrates that this Salinispora isolate does produce compounds of the rifamycin class, including rifamycin B and rifamycin SV. A rifamycin-specific KS primer set was designed, and that primer set increased the number of rifamycin-positive strains detected by PCR screening relative to the number detectable using a conserved KS-specific set. Thus, the Salinispora group of actinobacteria represents a potential new source of rifamycins outside the genus Amycolatopsis and the first recorded source of rifamycins from marine bacteria.  相似文献   

13.
The actinomycete Amycolatopsis mediterranei produces the commercially and medically important polyketide antibiotic rifamycin, which is widely used against mycobacterial infections. The rifamycin biosynthetic (rif) gene cluster has been isolated, cloned and characterized from A. mediterranei S699 and A. mediterranei LBGA 3136. However, there are several other strains of A. mediterranei which also produce rifamycins. In order to detect the variability in the rif gene cluster among these strains, several strains were screened by PCR amplification using oligonucleotide primers based on the published DNA sequence of the rif gene cluster and by using dEBS II (second component of deoxy-erythronolide biosynthase gene) as a gene probe. Out of eight strains of A. mediterranei selected for the study, seven of them showed the expected amplification of the DNA fragments whereas the amplified DNA pattern was different in strain A. mediterranei DSM 46095. This strain also showed striking differences in the banding pattern obtained after hybridization of its genomic DNA against the dEBS II probe. Initial cloning and characterization of the 4-kb DNA fragment from the strain DSM 46095, representing a part of the putative rifamycin biosynthetic cluster, revealed nearly 10% and 8% differences in the DNA and amino acid sequence, respectively, as compared to that of A. mediterranei S699 and A. mediterranei LBGA 3136. The entire rif gene cluster was later cloned on two cosmids from A. mediterranei DSM 46095. Based on the partial sequence analysis of the cluster and sequence comparison with the published sequence, it was deduced that among eight strains of A. mediterranei, only A. mediterranei DSM 46095 carries a novel rifamycin biosynthetic gene cluster.  相似文献   

14.
The process by which α-stereocenters of polyketide intermediates are set by modular polyketide synthases (PKSs) when condensation is not immediately followed by reduction is mysterious. However, the reductase-incompetent ketoreductase (KR) from the third module of 6-deoxyerythronolide B synthase has been proposed to operate as a racemase, aiding in the epimerization process that reverses the orientation of the α-methyl group of the polyketide intermediate generated by the ketosynthase to the configuration observed in the 6-deoxyerythronolide B final product. To learn more about the epimerization process, the structure of the C2-type KR from the third module of the pikromycin synthase, analogous to the KR from the third module of 6-deoxyerythronolide B synthase, was determined to 1.88 Å resolution. This first structural analysis of this KR-type reveals differences from reductase-competent KRs such as that the site NADPH binds to reductase-competent KRs is occluded by side chains and the putative catalytic tyrosine possesses more degrees of freedom. The active-site geometry may enable C2-type KRs to align the thioester and β-keto groups of a polyketide intermediate to reduce the pKa of the α-proton and accelerate its abstraction. Results from in vivo assays of engineered PKSs support that C2-type KRs cooperate with epimer-specific ketosynthases to set the configurations of substituent-bearing α-carbons.  相似文献   

15.
Two mutant strains of Amycolatopsis mediterranei VA17 and VA18 were isolated using physical (UV) and chemical (NTG) mutagens gave high rifamycin B than the parent type when grown in the same fermentation medium with a pH of 7.2, temperature 32v°C for a period of 12 days. The cultural conditions of both mutant strains are similar to the parent strain except temperature which was higher by 4v°C. By this mutation and selection study, rifamycin B production was improved from 1400 mg/l to 2450 mg/l.  相似文献   

16.
Sumary A mutant strain, derived fromNocardia mediterranei ATCC 13685 was found to accumulate rifamycin B in shake flask as major product, but the same strain in a 500-liter fermenter, produces a mixture of rifamycin B and other ansamycin, which was identificated by C NMR as rifamycin W.  相似文献   

17.
The amalgamation of the research efforts of biologists, chemists and geneticists led by scientists at the Department of Zoology, University of Delhi has resulted in the development of a novel rifamycin derivative; 24-desmethylrifampicin, which is highly effective against multi-drug resistant (MDR) strains of Mycobacterium tuberculosis. The production of rifamycin analogue was facilitated by genetic-synthetic strategies that have opened an interdisciplinary route for the development of more such rifamycin analogues aiming at a better therapeutic potential. The results of this painstaking effort of nearly 25 years of a team of students and scientists led by Professor Rup Lal have been recently published in the Journal of Biological Chemistry (www.jbc.org/content/289/30/21142.long). This strategy can now find applications for developing newer rifamycin analogues that can be harnessed to overcome the problem of MDR, extensively drug resistant (XDR) and totally drug resistant (TDR) M. tuberculosis.  相似文献   

18.
Ascomycin (FK520) is a structurally complex macrolide with immunosuppressant activity produced by Streptomyces hygroscopicus. The biosynthetic origin of C12-C15 and the two methoxy groups at C13 and C15 has been unclear. It was previously shown that acetate is not incorporated into C12-C15 of the macrolactone ring. Here, the acyl transferase (AT) of domain 8 in the ascomycin polyketide synthase was replaced with heterologous ATs by double homologous recombination. When AT8 was replaced with methylmalonyl-CoA-specific AT domains, the strains produced 13-methyl-13-desmethoxyascomycin, whereas when AT8 was replaced with a malonyl-specific domain, the strains produced 13-desmethoxyascomycin. These data show that ascomycin AT8 does not use malonyl- or methylmalonyl-CoA as a substrate in its native context. Therefore, AT8 must be specific for a substrate bearing oxygen on the alpha carbon. Feeding experiments showed that [(13)C]glycerol is incorporated into C12-C15 of ascomycin, indicating that both modules 7 and 8 of the polyketide synthase use an extender unit that can be derived from glycerol. When AT6 of the 6-deoxyerythronolide B synthase gene was replaced with ascomycin AT8 and the engineered gene was expressed in Streptomyces lividans, the strain produced 6-deoxyerythronolide B and 2-demethyl-6-deoxyerythronolide B. Therefore, although neither malonyl-CoA nor methylmalonyl-CoA is a substrate for ascomycin AT8 in its native context, both are substrates in the foreign context of the 6-deoxyerythronolide B synthase. Thus, we have demonstrated a new specificity for an AT domain in the ascomycin polyketide synthase and present evidence that specificity can be affected by context.  相似文献   

19.
A sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain. The data showed that greater than 99.9% of DEBS is phosphopantetheinylated. The assay was also used to interrogate the extent of phosphopantetheinylation of the lovastatin nonaketide synthase (LNKS) heterologously expressed in Saccharomyces cerevisiae. The data showed that LNKS was efficiently phosphopantetheinylated in S. cerevisiae and that lack of production of the lovastatin precursor polyketide was not due to insufficient phosphopantetheinylation of the expressed synthase.  相似文献   

20.
The assembly‐line architecture of polyketide synthases (PKSs) provides an opportunity to rationally reprogram polyketide biosynthetic pathways to produce novel antibiotics. A fundamental challenge toward this goal is to identify the factors that control the unidirectional channeling of reactive biosynthetic intermediates through these enzymatic assembly lines. Within the catalytic cycle of every PKS module, the acyl carrier protein (ACP) first collaborates with the ketosynthase (KS) domain of the paired subunit in its own homodimeric module so as to elongate the growing polyketide chain and then with the KS domain of the next module to translocate the newly elongated polyketide chain. Using NMR spectroscopy, we investigated the features of a structurally characterized ACP domain of the 6‐deoxyerythronolide B synthase that contribute to its association with its KS translocation partner. Not only were we able to visualize selective protein–protein interactions between the two partners, but also we detected a significant influence of the acyl chain substrate on this interaction. A novel reagent, CF3‐S‐ACP, was developed as a 19F NMR spectroscopic probe of protein–protein interactions. The implications of our findings for understanding intermodular chain translocation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号