首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the exception of relatively brief periods when they reproduce and moult, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behaviour during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during ice-bound fasting periods (2004−2008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyse how bathymetry, seasonality and FPT influence the hooded seals’ diving behaviour described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend >20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behaviour. We found that male and female hooded seals are spatially segregated and that diving behaviour varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-moult) and August–October (post-moult/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-moult/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods.  相似文献   

2.
Tufted ducks Aythya fuligula do not control buoyancy during diving   总被引:1,自引:0,他引:1  
Work against buoyancy during submergence is a large component of the energy costs for shallow diving ducks. For penguins, buoyancy is less of a problem, however they still seem to trade‐off levels of oxygen stores against the costs and benefits of buoyant force during descent and ascent. This trade‐off is presumably achieved by increasing air sac volume and hence pre‐dive buoyancy (Bpre) when diving deeper. Tufted ducks, Aythya fuligula, almost always dive with nearly full oxygen stores so these cannot be increased. However, the high natural buoyancy of tufted ducks guarantees a passive ascent, so they might be expected to decrease Bpre before particularly deep, long dives to reduce the energy costs of diving. Body heat lost to the water can also be a cause of substantial energy expenditure during a dive, both through dissipation to the ambient environment and through the heating of ingested food and water. Thus dive depth (dd), duration and food type can influence how much heat energy is lost during a dive. The present study investigated the relationship between certain physiological and behavioural adjustments by tufted ducks to dd and food type. Changes in Bpre, deep body temperature (Tb) and dive time budgeting of four ducks were measured when diving to two different depths (1.5 and 5.7 m), and for two types of food (mussels and mealworms). The hypothesis was that in tufted ducks, Bpre decreases as dd increases. The ducks did not change Bpre in response to different diving depths, and thus the hypothesis was rejected. Tb was largely unaffected by dives to either depth. However, diving behaviour changed at the greater dd, including an increase in dive duration and vertical descent speed. Behaviour also changed depending on the food type, including an increase in foraging duration and vertical descent speed when mussels were present. Behavioural changes seem to represent the major adjustment made by tufted ducks in response to changes in their diving environment.  相似文献   

3.

Background

Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth.

Methodology/Principal Findings

Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with.

Conclusions/Significance

Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.  相似文献   

4.
Breeding Brünnich's guillemots Uria lomvia show stepwise mass loss at the time of hatch. This mass loss has usually been explained as an adaptation to reduce the cost of flight during the chick‐rearing period because flight time increases during that period. It is possible, however, that mass loss also increases dive performance during the chick‐rearing period because time spent diving also increases during that period. Reduced mass could reduce basal metabolic rate or costs associated with buoyancy and therefore increase aerobic dive limit. To examine the role of mass loss in dive behavior, we attached time‐depth‐temperature recorders for 24–48 h to chick‐rearing and incubating Brünnich's guillemots at Coats Island, Nunavut (2005: n=45, 2006: n=40), and recorded body mass before and after each deployment. There was no relationship between mass and dive duration during either incubation or chick‐rearing. Seventeen of the birds we sampled during incubation were resampled during chick‐rearing. For this group, dive duration increased with mass loss between incubation and chick‐rearing (r2=0.67–0.75). Mass loss occurred through reductions in metabolically‐active tissues (liver, bladder) and buoyant tissues (lipids) although muscle and gut mass did not change. Despite the large change in lipids, buoyancy only changed by 0.1%, and mass loss therefore did not have much effect on costs associated with buoyancy. Nonetheless, surface pause duration for a given dive depth decreased during chick‐rearing, supporting the idea that reduced mass led to increased aerobic dive limit through reduced metabolic rate and inertial costs; oxygen stores did not increase. We also attached neutrally (n=9) and negatively (n=11) buoyant handicaps to the legs of adults to assess the effect of artificial mass increases on time budgets. Artificially increasing mass decreased total time spent diving but did not change time spent flying. There was no change in shift length between incubation and chick‐rearing, and therefore no support for the idea that mass loss reflected a change in fasting endurance requirements. An energetic model suggested that the observed mass reduction reduced dive costs by 5–8% and flight costs by 3%. We concluded that mass loss may be as important for increasing dive performance as increasing flight performance.  相似文献   

5.
Understanding the variability of foraging behavior within a population of predators is important for determining their role in the ecosystem and how they may respond to future ecosystem changes. However, such variability has seldom been studied in harbor seals on a fine spatial scale (<30 km). We used a combination of standard and Bayesian generalized linear mixed models to explore how environmental variables influenced the dive behavior of harbor seals. Time-depth recorders were deployed on harbor seals from two haul-out sites in the Salish Sea in 2007 (n = 18) and 2008 (n = 11). Three behavioral bout types were classified from six dive types within each bout; however, one of these bout types was related to haul-out activity and was excluded from analyses. Deep foraging bouts (Type I) were the predominant type used throughout the study; however, variation in the use of bout types was observed relative to haul-out site, season, sex, and light (day/night). The proportional use of Type I and Type II (shallow foraging/traveling) bouts differed dramatically between haul-out sites, seasons, sexes, and whether it was day or night; individual variability between seals also contributed to the observed differences. We hypothesize that this variation in dive behavior was related to habitat or prey specialization by seals from different haul-out sites, or individual variability between seals in the study area. The results highlight the potential influence of habitat and specialization on the foraging behavior of harbor seals, and may help explain the variability in diet that is observed between different haul-out site groups in this population.  相似文献   

6.
The diving behavior of Adélie penguins Pygoscelis adeliae was investigated using time–depth recorders during the incubation period in the fast sea-ice area of Lützow-Holm Bay, Antarctica. Dive profiles and activity/time allocation suggested that penguins were obligated to walk on the fast-ice for 90–100 km until a polynya, which they used as an access to the pack-ice zone. Dive depth did not differ between males and females, though males’ dive duration was longer than that of females. Dive depth was slightly shallower and dive duration was shorter during the incubation than during the chick-rearing phase. Birds dove throughout the day, although less frequently around midnight, and there was no clear diel change in dive depth. This daily dive pattern during incubation period was similar to that previously observed during the chick-rearing period in a fast sea-ice area, but differed from that observed in sea-ice-free area. Variations in diving behavior resulted from different environmental conditions, such as foraging area with different sea-ice condition, as well as from different life history strategies.  相似文献   

7.
Diving birds have to overcome buoyancy, especially when diving in shallow water. Darters and anhingas (Anhingidae) are specialist shallow-water divers, with adaptations for reducing their buoyancy. Compared to closely-related cormorants (Phalacrocoracidae), darters have fully wettable plumage, smaller air sacs and denser bones. A previous study of darter diving behaviour reported no relationship between dive duration and water depth, contrary to optimal dive models. In this study I provide more extensive observations of African darters Anhinga melanogaster rufa diving in water<5 m deep at two sites. Dive duration increases with water depth at both sites, but the relationship is weak. Dives were longer than dives by cormorants in water of similar depth (max 108 s in water 2.5 m deep), with dives of up to 68 s observed in water<0.5 m deep. Initial dives in a bout were shorter than expected, possibly because their plumage was not fully saturated. Dive efficiency (dive:rest ratio) was 5–6, greater than cormorants (2.7±0.4 for 18 species) and other families of diving birds (average 0.2–4.3). Post-dive recovery periods increased with dive duration, but only slowly, resulting in a strong increase in efficiency with dive duration. All dives are likely to fall within the theoretical anaerobic dive limit. Foraging bouts were short (17.8±4.3 min) compared to cormorants, with birds spending 80±5% of time underwater. Darters take advantage of their low buoyancy to forage efficiently in shallow water, and their slow, stealthy dives are qualitatively different from those of other diving birds. However, they are forced to limit the duration of foraging bouts by increased thermoregulatory costs associated with wettable plumage.  相似文献   

8.
We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10) both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8±4.5 h) and rest periods on sea ice (2.5±2.3 h). After recorder deployment and release near the colony, the birds spent 17.9±8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8±7.4% and 69.2±7.4%, respectively. When in the water, they spent 67.9±3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2±1.7 min) and periods of swimming at depths shallower than 5 m (0.25±0.38 min). When the birds were on the ice, they primarily used time for resting (90.3±4.1% of time) and spent only 9.7±4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.  相似文献   

9.
Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for ‘surfacers’ because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive.  相似文献   

10.
Argonauts (Cephalopoda: Argonautidae) are a group of rarely encountered open-ocean pelagic octopuses with benthic ancestry. Female argonauts inhabit a brittle ‘paper nautilus’ shell, the role of which has puzzled naturalists for millennia. The primary role attributed to the shell has been as a receptacle for egg deposition and brooding. Our observations of wild argonauts have revealed that the thin calcareous shell also functions as a hydrostatic structure, employed by the female argonaut to precisely control buoyancy at varying depths. Female argonauts use the shell to ‘gulp’ a measured volume of air at the sea surface, seal off the captured gas using flanged arms and forcefully dive to a depth where the compressed gas buoyancy counteracts body weight. This process allows the female argonaut to attain neutral buoyancy at depth and potentially adjust buoyancy to counter the increased (and significant) weight of eggs during reproductive periods. Evolution of this air-capture strategy enables this negatively buoyant octopus to survive free of the sea floor. This major shift in life mode from benthic to pelagic shows strong evolutionary parallels with the origins of all cephalopods, which attained gas-mediated buoyancy via the closed-chambered shells of the true nautiluses and their relatives.  相似文献   

11.
Morales-Baquerol  R.  Carrillo  P.  Cruz-Pizarro  L. 《Hydrobiologia》1995,313(1):359-363
We examine the development of Hexarthra bulgarica (Wisniewski) populations in relation to thermal stability in natural environments. A high frequency sampling program was developed simultaneously in two high mountain lakes: a shallow one, with daily large temperature changes but little surface-bottom temperature difference and a deeper one with more stable temperature but vertical heterogeneity in the water profile. Since the capacity of H. bulgarica to perform vertical migrations in these lakes of Sierra Nevada is already known, we have studied the relationship between egg ratios and chlorophyll-a concentration, mean temperatures and temperature instability (measured as the daily rate of temperature change — TCR — as well as the surface-bottom temperature difference — SBT -) in both lakes. Results show that the intensity of temperature fluctuations has a positive effect on the egg-ratios, as TCR is only correlated with that variable in the shallow lake and SBT is only correlated with egg-ratios in the deeper one.  相似文献   

12.
To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.  相似文献   

13.
We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200–300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200–300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.  相似文献   

14.
Summary Conditions are derived for a protected polymorphism in a dioecious population subdivided into an arbitrary number of demes which exchange migrants. Generations are discrete and nonoverlapping; mutation and random drift are neglected. The analysis is restricted to a diallelic autosomal locus. In contrast to the monoecious case, the protection criteria depend on the order of migration and selection; they become identical for adult and juvenile migration if both the male and female backward migration matrices are symmetric, or the migration or selection patterns in the two sexes are the same. The protection conditions are presented explicitly for the Levene model. A recessive allele is protected in a panmictic dioecious population if the unweighted average of the recessive-to-dominant fitness ratios in the two sexes exceeds unity.Supported by the National Science Foundation (Grant No. DEB77-21494)  相似文献   

15.
It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass−1/3. In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8–2.3 m s−1 were significantly related to mass0.08 and stroke frequencies were proportional to mass−0.29. These scaling relationships do not agree with the previous predictions for geometrically similar animals. We propose a theoretical model, considering metabolic cost, work against mechanical forces (drag and buoyancy), pitch angle and dive depth. This new model predicts that: (i) the optimal swim speed, which minimizes the energy cost of transport, is proportional to (basal metabolic rate/drag)1/3 independent of buoyancy, pitch angle and dive depth; (ii) the optimal speed is related to mass0.05; and (iii) stroke frequency is proportional to mass−0.28. The observed scaling relationships of penguins support these predictions, which suggest that breath-hold divers swam optimally to minimize the cost of transport, including mechanical and metabolic energy during dive.  相似文献   

16.
Neutral buoyancy at the stationary depth is advantageous for diving animals. The adjustment of the air inspiration before diving can be a mechanism of buoyancy control for diving animals with lungs. The stationary depth of neutral buoyancy becomes deeper with larger inspiration. Our aim was to examine whether the loggerhead sea turtle,Caretta caretta regulates the buoyancy to be neutral at the stationary depth of the dive. During an internesting period of the breeding season, we recorded the diving pattern of an adult female using a time-depth recorder and a time-swim distance recorder. The dives were classified into four types (Types 1 to 4) based on the time-depth profile. Types-3 and 4 (66% of the total dive duration) have three phases in each dive: (1) first descent, (2) gradual ascent (stationary period), and (3) final ascent. In the gradual ascent phase, the turtle stayed at a certain depth without swimming. This means that the turtle was neutrally buoyant during the gradual ascent phase. The depth of the gradual ascent phase was positively correlated with the dive duration, supporting the hypothesis that neutral buoyancy of the loggerhead turtle is achieved by the air in their lungs.  相似文献   

17.
Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome–environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)—a species of important economic, social, cultural, and ecological value—in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool‐seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration‐specific and spawning site‐specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites.  相似文献   

18.
Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles'' mean body temperature was 5.2 ± 0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship.  相似文献   

19.
Aquatic birds have access to limited amounts of usable oxygen when they forage (dive) underwater, so the major physiological constraint to their behaviour is the need to periodically visit the water surface to replenish these stores and remove accumulated carbon dioxide. The size of the oxygen stores and the rate at which they are used (V dot o2) or carbon dioxide accumulates are the ultimate determinants of the duration that aquatic birds can remain feeding underwater. However, the assumption that the decision to terminate a dive is governed solely by the level of the respiratory stores is not always valid. Quantification of an optimal diving model for tufted ducks (Aythya fuligula) shows that while they dive efficiently by spending a minimum amount of time on the surface to replenish the oxygen used during a dive, they dive with nearly full oxygen stores and surface well before these stores are exhausted. The rates of carbon dioxide production during dives and removal during surface intervals are likely to be at least as important a constraint as oxygen; thus, further developments of optimal diving models should account for their effects. In the field, diving birds will adapt to changing environmental conditions and often maximise the time spent submerged during diving bouts. However, other factors influence the diving depths and durations of aquatic birds, and in some circumstances they are unable to forage sufficiently well to provide food for their offspring. The latest developments in telemetry have demonstrated how diving birds can make physiological decisions based on complex environmental factors. Diving penguins can control their inhaled air volume to match the expected depth, likely prey encounter rate, and buoyancy challenges of the following dive.  相似文献   

20.
Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most “natural” state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号