首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
组蛋白乙酰化修饰是基因起始转录的关键步骤. p300等组蛋白乙酰转移酶(HATs)催化组蛋白和非组蛋白的乙酰化. HATs具有多种细胞功能,而且乙酰化对底物蛋白的功能改变也具有重要功能. 组蛋白乙酰转移酶p300可乙酰化多种细胞内蛋白,某些病毒蛋白与p300有相互作用并促进病毒复制. 因此, p300是细胞内具有广泛功能的转录激活因子. 组蛋白乙酰转移酶结构域(HAT区)是p300乙酰化酶活性的最小中心功能域,在p300乙酰化底物中具有重要功能. 本文重组表达了对应p300 HAT区的GST-p300 HAT蛋白,对其乙酰化酶的活性进行检测. 结果证实,p300 HAT蛋白在体外可高效乙酰化组蛋白H3. 随后,对体外乙酰化反应的条件进行优化. 总之,本文构建了一种简单高效、非放射性体外乙酰化体系,适用于对潜在底物蛋白的乙酰化水平和机制进行分析,以及乙酰化蛋白的相关功能的研究.  相似文献   

3.
4.
5.
6.
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis.  相似文献   

7.
Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.  相似文献   

8.
9.
Wu  Ziyi  Zhang  Yinong  Yang  Xu  Zhao  Ping 《Neurochemical research》2020,45(7):1626-1635
Neurochemical Research - Repeated or prolonged use of general anesthetics in pregnant women may disturb the neurodevelopment of infants. Compelling evidence indicates that maternal exercise during...  相似文献   

10.
11.
Curcumin, a naturally occurring polyphenolic compound, is known to possess diverse pharmacological properties. There is a scarcity of literature documenting the exact mechanism by which curcumin modulates its biological effects. In the present study, we have used yeast as a model organism to dissect the mechanism underlying the action of curcumin. We found that the yeast mutants of histone proteins and chromatin modifying enzymes were sensitive to curcumin and further supplementation of iron resulted in reversal of the changes induced by curcumin. Additionally, treatment of curcumin caused the iron starvation induced expression of FET3, FRE1 genes. We also demonstrated that curcumin induces degradation of Sml1p, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. The degradation of Sml1p was mediated through proteasome and vacuole dependent protein degradation pathways. Furthermore, curcumin exerts biological effect by altering global proteome profile without affecting chromatin architecture. These findings suggest that the medicinal properties of curcumin are largely contributed by its cumulative effect of iron starvation and epigenetic modifications.  相似文献   

12.
13.

Objectives

Ample clinical and experimental evidence indicated that patients with Alzheimer''s disease display a high incidence of cardiovascular events. This study was designed to examine myocardial histology, cardiomyocyte shortening, intracellular Ca2+ homeostasis and regulatory proteins, electrocardiogram, adrenergic response, endoplasmic reticulum (ER) stress and protein carbonyl formation in C57 wild-type (WT) mice and an APPswe/PS1dE9 transgenic (APP/PS1) model for Alzheimer''s disease.

Methods

Cardiomyocyte mechanical properties were evaluated including peak shortening (PS), time-to-PS (TPS), time-to-relengthening (TR), maximal velocity of shortening and relengthening (±dL/dt), intracellular Ca2+ transient rise and decay.

Results

Little histological changes were observed in APP/PS1 myocardium. Cardiomyocytes from APP/PS1 but not APP or PS1 single mutation mice exhibited depressed PS, reduced±dL/dt, normal TPS and TR compared with WT mice. Rise in intracellular Ca2+ was lower accompanied by unchanged resting/peak intracellular Ca2+ levels and intracellular Ca2+ decay in APP/PS1 mice. Cardiomyocytes from APP/PS1 mice exhibited a steeper decline in PS at high frequencies. The responsiveness to adrenergic agonists was dampened although β1-adrenergic receptor expression was unchanged in APP/PS1 hearts. Expression of the Ca2+ regulatory protein phospholamban and protein carbonyl formation were downregulated and elevated, respectively, associated with unchanged SERCA2a, Na+-Ca2+ exchanger and ER stress markers in APP/PS1 hearts. Our further study revealed that antioxidant N-acetylcysteine attenuated the contractile dysfunction in APP/PS1 mice.

Conclusions

Our results depicted overt cardiomyocyte mechanical dysfunction in the APP/PS1 Alzheimer''s disease model, possibly due to oxidative stress.  相似文献   

14.
15.



为了检测Alzheimer病(Alzheimer’s disease,AD)患者外周血中淀粉样前体蛋白(Amyloid Precursor Protein, APP)基因及早老素1(Presenilin 1, PS1)基因的表达情况,进而探讨APP及PS1基因的表达与AD的相关性,采用SYBRGreenⅠ的方法对45例AD患者、25例血管性痴呆(vascular dementia, VD)患者及60名正常对照组样本的mRNA进行绝对定量,检测得到APP基因及PS1基因在对照组中的表达水平分别为0.026±0.005 amol/μg cDNA和0.026±0.004 amol/μg cDNA;在AD患者组中的表达量分别为0.044±0.006 amol/μg cDNA和0.051±0.011 amol/μg cDNA;,在VD患者组中的表达水平分别为0.072±0.013 amol/μg cDNA和0.039±0.005 amol/μg cDNA 。经显著性检验,AD患者组APP基因的表达水平上调,t=2.639, P<0.01;PS1基因的表达水平同样呈上调趋势,t=2.173,P<0.05,差异均具有统计学意义。VD患者组APP基因的表达水平上调,t=3.028,P<0.01;PS1基因的表达水平也同样呈上调趋势,t=2.012,P<0.05,均有显著性差异。因此,APP及PS1基因的表达水平的增高并不一定与AD发生特异性关联,而可能与多种导致痴呆的脑部病变发生关联。  相似文献   

16.

Background

The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr protein kinase that plays a pivotal role in multiple fundamental biological processes, including synaptic plasticity. We explored the relationship between the mTOR pathway and β-amyloid (Aβ)-induced synaptic dysfunction, which is considered to be critical in the pathogenesis of Alzheimer''s disease (AD).

Methodology/Principal Findings

We provide evidence that inhibition of mTOR signaling correlates with impairment in synaptic plasticity in hippocampal slices from an AD mouse model and in wild-type slices exposed to exogenous Aβ1-42. Importantly, by up-regulating mTOR signaling, glycogen synthase kinase 3 (GSK3) inhibitors rescued LTP in the AD mouse model, and genetic deletion of FK506-binding protein 12 (FKBP12) prevented Aβ-induced impairment in long-term potentiation (LTP). In addition, confocal microscopy demonstrated co-localization of intraneuronal Aβ42 with mTOR.

Conclusions/Significance

These data support the notion that the mTOR pathway modulates Aβ-related synaptic dysfunction in AD.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号