首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Phylogenetic relationships among 23 nonhuman primate (NHP) major histocompatibility complex class I chain-related gene (MIC) sequences, 54 confirmed human MICA alleles, and 16 human MICE alleles were constructed with methods of sequence analysis. Topology of the phylogenetic tree showed separation between NHP MICs and human MICs. For human MICs, the topology indicated monophyly for the MICB alleles, while MICA alleles were separated into two lineages, LI and LII. Of these, LI MICA alleles shared a common ancestry with gorilla (Ggo) MIC. One conservative amino acid difference and two nonconservative amino acid differences in the 3 domain were found between the MICA lineages. The nonconservative amino acid differences might imply structural and functional differences. Transmembrane (TM) trinucleotide-repeat variants were found to be specific to the MICA lineages such as A4, A9, and A10 to LI and A5 to LII. Variants such as A5.1 and A6 were commonly found in both MICA lineages. Based on these analyses, we postulate a polyphyletic origin for MICA alleles and their division into two lineages, LI and LII. As such, there would be 30 alleles in LI and 24 alleles in LII, thereby reducing the current level of polymorphism that exists, based on a presumed monophyletic origin. The lower degree of polymorphism in MICA would then be in line with the rest of the human major histocompatibility complex nonclassical class I genes.  相似文献   

2.
3.
目的:探讨主要组织相容性复合物I类相关蛋白A/B(MICA/B)在不同宫颈病变组织及宫颈细胞系中的表达及定位。方法:采用免疫组织化学SP法检测宫颈炎症组织、高级别鳞状上皮内病变(high-grade squamous intraepithelial lesions, HSIL)及宫颈鳞癌(cervical squamous cell carcinoma, CSCC)组织中MICA/B蛋白的表达情况。采用免疫荧光化学与激光共聚焦显微术结合的方法研究3种宫颈癌细胞系C33a(HPV-)、Siha(HPV16+)、Hela(HPV18+)及正常宫颈上皮细胞系H8中MICA/B的表达和定位。结果:MICA/B蛋白主要表达定位于细胞浆,部分细胞核,在宫颈鳞癌组织中阳性表达率(83.3%、81.8%)高于宫颈炎症组织(39.3%、44.0%),差异具有统计学意义(均有P0.001);MICA蛋白在HSIL组织的阳性表达率(81.8%)高于宫颈炎症组织(39.3%),差异具有统计学意义(P=0.002);与分化程度、临床分期、淋巴结转移等临床病理参数之间比较无统计学差异(P0.05)。结论:MICA蛋白随着宫颈组织病变的加重阳性表达率逐渐增高,MICB蛋白在宫颈癌组织的表达高于宫颈炎症组织。提示MICA/B蛋白可为宫颈癌的诊断及靶向治疗提供新方向。  相似文献   

4.
CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.  相似文献   

5.
Cellular cytotoxicity is the hallmark of NK cells mediating both elimination of virus-infected or malignant cells, and modulation of immune responses. NK cytotoxicity is triggered upon ligation of various activating NK cell receptors. Among these is the C-type lectin-like receptor NKp80 which is encoded in the human Natural Killer Gene Complex (NKC) adjacent to its ligand, activation-induced C-type lectin (AICL). NKp80-AICL interaction promotes cytolysis of malignant myeloid cells, but also stimulates the mutual crosstalk between NK cells and monocytes.While many activating NK cell receptors pair with ITAM-bearing adaptors, we recently reported that NKp80 signals via a hemITAM-like sequence in its cytoplasmic domain. Here we molecularly dissect the NKp80 hemITAM and demonstrate that two non-consensus amino acids, in particular arginine 6, critically impair both hemITAM phosphorylation and Syk recruitment. Impaired Syk recruitment results in a substantial attenuation of cytotoxic responses upon NKp80 ligation. Reconstituting the hemITAM consensus or Syk overexpression resulted in robust NKp80-mediated responsiveness. Collectively, our data provide a molecular rationale for the restrained activation potential of NKp80 and illustrate how subtle alterations in signaling motifs determine subsequent cellular responses. They also suggest that non-consensus alterations in the NKp80 hemITAM, as commonly present among mammalian NKp80 sequences, may have evolved to dampen NKp80-mediated cytotoxic responses toward AICL-expressing cells.  相似文献   

6.
MHC class I molecules display peptides at the cell surface to cytotoxic T cells. The co-factor tapasin functions to ensure that MHC I becomes loaded with high affinity peptides. In most mammals, the tapasin gene appears to have little sequence diversity and few alleles and is located distal to several classical MHC I loci, so tapasin appears to function in a universal way to assist MHC I peptide loading. In contrast, the chicken tapasin gene is tightly linked to the single dominantly expressed MHC I locus and is highly polymorphic and moderately diverse in sequence. Therefore, tapasin-assisted loading of MHC I in chickens may occur in a haplotype-specific way, via the co-evolution of chicken tapasin and MHC I. Here we demonstrate a mechanistic basis for this co-evolution, revealing differences in the ability of two chicken MHC I alleles to bind and release peptides in the presence or absence of tapasin, where, as in mammals, efficient self-loading is negatively correlated with tapasin-assisted loading. We found that a polymorphic residue in the MHC I α3 domain thought to bind tapasin influenced both tapasin function and intrinsic peptide binding properties. Differences were also evident between the MHC alleles in their interactions with tapasin. Last, we show that a mismatched combination of tapasin and MHC alleles exhibit significantly impaired MHC I maturation in vivo and that polymorphic MHC residues thought to contact tapasin influence maturation efficiency. Collectively, this supports the possibility that tapasin and BF2 proteins have co-evolved, resulting in allele-specific peptide loading in vivo.  相似文献   

7.
Natural killer (NK) cell recognition of the nonclassical human leukocyte antigen (HLA) molecule HLA-E is dependent on the presentation of a nonamer peptide derived from the leader sequence of other HLA molecules to CD94-NKG2 receptors. However, human cytomegalovirus can manipulate this central innate interaction through the provision of a “mimic” of the HLA-encoded peptide derived from the immunomodulatory glycoprotein UL40. Here, we analyzed UL40 sequences isolated from 32 hematopoietic stem cell transplantation recipients experiencing cytomegalovirus reactivation. The UL40 protein showed a “polymorphic hot spot” within the region that encodes the HLA leader sequence mimic. Although all sequences that were identical to those encoded within HLA-I genes permitted the interaction between HLA-E and CD94-NKG2 receptors, other UL40 polymorphisms reduced the affinity of the interaction between HLA-E and CD94-NKG2 receptors. Furthermore, functional studies using NK cell clones expressing either the inhibitory receptor CD94-NKG2A or the activating receptor CD94-NKG2C identified UL40-encoded peptides that were capable of inhibiting target cell lysis via interaction with CD94-NKG2A, yet had little capacity to activate NK cells through CD94-NKG2C. The data suggest that UL40 polymorphisms may aid evasion of NK cell immunosurveillance by modulating the affinity of the interaction with CD94-NKG2 receptors.  相似文献   

8.
The natural cytotoxicity receptors, comprised of three type I membrane proteins NKp30, NKp44, and NKp46, are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. Among these, NKp30 is a major receptor targeting virus-infected cells, malignantly transformed cells, and immature dendritic cells. To date, only few cellular ligands of NKp30 have been discovered, and the molecular details of ligand recognition by NKp30 are poorly understood. Within the current study, we found that the ectodomain of NKp30 forms functional homo-oligomers that mediate high affinity binding to its corresponding cellular ligand B7-H6. Notably, this homo-oligomerization is strongly promoted by the stalk domain of NKp30. Based on these data, we suggest that homo-oligomerization of NKp30 in the plasma membrane of NK cells, which might be favored by IL-2-dependent up-regulation of NKp30 expression, provides a way to improve recognition and lysis of target cells by NK cells.  相似文献   

9.
Human killer immunoglobulin-like receptors (KIR) are expressed on natural killer (NK) cells and are involved in their immunoreactivity. While KIR with a long cytoplasmic tail deliver an inhibitory signal when bound to their respective major histocompatibility complex class I ligands, KIR with a short cytoplasmic tail can activate NK responses. The expansion of the KIR gene family originally appeared to be a phenomenon restricted to primates (human, apes, and monkeys) in comparison to rodents, which via convergent evolution have numerous C-type lectin-like Ly49 molecules that function analogously. Further studies have shown that multiple KIR are also present in cow and horse. In this study, we have identified by comparative genomics the first and possibly only KIR gene, named KIR2DL1, in the domesticated pig (Sus scrofa) allowing further evolutionary comparisons to be made. It encodes a protein with two extracellular immunoglobulin domains (D0 + D2), and a long cytoplasmic tail containing two inhibitory motifs. We have mapped the pig KIR2DL1 gene to chromosome 6q. Flanked by LILRa, LILRb, and LILRc, members of the leukocyte immunoglobulin-like receptor (LILR) family, on the centromeric end, and FCAR, NCR1, NALP7, NALP2, and GP6 on the telomeric end, pig demonstrates conservation of synteny with the human leukocyte receptor complex (LRC). Both the porcine KIR and LILR genes have diverged sufficiently to no longer be clearly orthologous with known human LRC family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号