共查询到20条相似文献,搜索用时 15 毫秒
1.
Naoki Nakaya Afia Sultana Hee-Sheung Lee Stanislav I. Tomarev 《The Journal of biological chemistry》2012,287(44):37171-37184
Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth. 相似文献
2.
Christa L. Cortesio Benjamin J. Perrin David A. Bennin Anna Huttenlocher 《Molecular biology of the cell》2010,21(1):186-197
Growth factor stimulation induces the formation of dynamic actin structures known as dorsal ruffles. Mammalian actin-binding protein-1 (mAbp1) is an actin-binding protein that has been implicated in regulating clathrin-mediated endocytosis; however, a role for mAbp1 in regulating the dynamics of growth factor–induced actin-based structures has not been defined. Here we show that mAbp1 localizes to dorsal ruffles and is necessary for platelet-derived growth factor (PDGF)-mediated dorsal ruffle formation. Despite their structural similarity, we find that mAbp1 and cortactin have nonredundant functions in the regulation of dorsal ruffle formation. mAbp1, like cortactin, is a calpain 2 substrate and the preferred cleavage site occurs between the actin-binding domain and the proline-rich region, generating a C-terminal mAbp1 fragment that inhibits dorsal ruffle formation. Furthermore, mAbp1 directly interacts with the actin regulatory protein WASp-interacting protein (WIP) through its SH3 domain. Finally, we demonstrate that the interaction between mAbp1 and WIP is important in regulating dorsal ruffle formation and that WIP-mediated effects on dorsal ruffle formation require mAbp1. Taken together, these findings identify a novel role for mAbp1 in growth factor–induced dorsal ruffle formation through its interaction with WIP. 相似文献
3.
4.
Zhaohuan Zhang Xiaohui Xu Yong Zhang Jianfeng Zhou Zhongwang Yu Cheng He 《The Journal of biological chemistry》2009,284(23):15717-15728
LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1-(123–510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation. Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension.Axons of the adult mammalian central nervous system possess an extremely limited ability to regenerate after injury, largely because of inhibitory components of myelin preventing axon growth (1, 2). Several myelin-associated inhibitors have been identified, including myelin-associated glycoprotein (3–5), chondroitin sulfate proteoglycans (6), oligodendrocyte myelin glycoprotein (7), and Nogo (8–10). Myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, and Nogo bind to the Nogo-66 receptor (NgR)3 and exert their actions through a tripartite receptor complex NgR/LINGO-1/p75NTR (11) or NgR/LINGO-1/TROY (12, 13).LINGO-1 is a transmembrane protein that contains a leucine-rich repeat, an immunoglobulin domain, and a short intracellular tail (11). LINGO-1 functions as an essential component of the NgR complexes that mediate the activity of myelin inhibitors to regulate central nervous system axon growth (11, 14). In neurons, the NgR complexes activate RhoA in the presence of myelin inhibitors, which lead to growth cone collapse and neurite extension inhibition (11). Attenuation of LINGO-1 function is able to overcome the myelin inhibitory activity in the spinal cord that prevents axonal regeneration after lesion in rats (15). Besides, it has been reported that LINGO-1 is also expressed in oligodendrocytes, where it negatively regulates oligodendrocyte differentiation and axon myelination (16). Inhibition of LINGO-1 promotes spinal cord remyelination in an experimental model of autoimmune encephalitis (17). Moreover, inhibition of LINGO-1 has been shown to enhance survival, structure, and function of dopaminergic neurons in Parkinson disease models (18). Although the function of LINGO-1 has been intensively studied, much less is known about its downstream signaling.To gain insight into the mechanisms by which LINGO-1 functions, it is of considerable importance to identify new binding partners of LINGO-1. Therefore, using the intracellular domain of LINGO-1 as bait, we employed yeast two-hybrid screening on a brain cDNA library and identified several candidates that interact with LINGO-1, one of which is the protein kinase WNK1.WNKs (with no lysine [K]) are a distinct subfamily of serine-threonine kinases, which are characterized by a unique placement of the lysine that is involved in binding ATP and catalyzing phosphoryl transfer (19). Thus far, WNKs are known composed of four members, WNK1, WNK2, WNK3, and WNK4. Mutations in the serine-threonine kinases WNK1 and WNK4 cause a Mendelian disease PAHII, featuring hypertension and hyperkalemia (20, 21), and their roles in the regulation of electrolyte flux in the kidney have been well established (22). Recently, other important features of WNKs are beginning to be understood. WNKs have also been proposed functioning in a number of non-transport processes, including cell growth, differentiation, and apoptosis (23–26). Although WNK1 has been shown to be expressed in brain (27, 28), little is known about its function in the nervous system until recently; mutations of a nervous system-specific exon of the WNK1 gene were found to cause Hereditary sensory and autonomic neuropathy type II (HSANII) (29). In this study WNK1 was demonstrated to interact with LINGO-1 and regulate Nogo-induced inhibition of neurite extension. 相似文献
5.
Changes in intracellular Ca2+ concentrations ([Ca2+]i) are an important signal for various physiological activities. The Na+/Ca2+ exchangers (NCX) at the plasma membrane transport Ca2+ into or out of the cell according to the electrochemical gradients of Na+ and Ca2+ to modulate [Ca2+]i homeostasis. Calmodulin (CaM) senses [Ca2+]i changes and relays Ca2+ signals by binding to target proteins such as channels and transporters. However, it is not clear how calmodulin modulates NCX activity. Using CaM as a bait, we pulled down the intracellular loops subcloned from the NCX1 splice variants NCX1.1 and NCX1.3. This interaction requires both Ca2+ and a putative CaM-binding segment (CaMS). To determine whether CaM modulates NCX activity, we co-expressed NCX1 splice variants with CaM or CaM1234 (a Ca2+-binding deficient mutant) in HEK293T cells and measured the increase in [Ca2+]i contributed by the influx of Ca2+ through NCX. Deleting the CaMS from NCX1.1 and NCX1.3 attenuated exchange activity and decreased membrane localization. Without the mutually exclusive exon, the exchange activity was decreased and could be partially rescued by CaM1234. Point-mutations at any of the 4 conserved a.a. residues in the CaMS had differential effects in NCX1.1 and NCX1.3. Mutating the first two conserved a.a. in NCX1.1 decreased exchange activity; mutating the 3rd or 4th conserved a.a. residues did not alter exchange activity, but CaM co-expression suppressed activity. Mutating the 2nd and 3rd conserved a.a. residues in NCX1.3 decreased exchange activity. Taken together, our results demonstrate that CaM senses changes in [Ca2+]i and binds to the cytoplasmic loop of NCX1 to regulate exchange activity. 相似文献
6.
7.
Tong Liang Shenglin Mei Chen Shi Yu Yang Yao Peng Libang Ma Fei Wang Xu Li Xi Huang Yanhai Yin Hongtao Liu 《Developmental cell》2018,44(4):512-523.e5
8.
Pai-Tsang Huang Chien-Ho Chen I-Uen Hsu Shaima’a Ahmad Salim Shu-Huei Kao Chao-Wen Cheng Chang-Hao Lai Cheng-Fan Lee Yung-Feng Lin 《PloS one》2015,10(2)
Alterations in microtubule-dependent trafficking and certain signaling pathways in neuronal cells represent critical pathogenesis in neurodegenerative diseases. Huntingtin (Htt)-associated protein-1 (Hap1) is a brain-enriched protein and plays a key role in the trafficking of neuronal surviving and differentiating cargos. Lack of Hap1 reduces signaling through tropomyosin-related kinases including extracellular signal regulated kinase (ERK), resulting in inhibition of neurite outgrowth, hypothalamic dysfunction and postnatal lethality in mice. To examine how Hap1 is involved in microtubule-dependent trafficking and neuronal differentiation, we performed a proteomic analysis using taxol-precipitated microtubules from Hap1-null and wild-type mouse brains. Breakpoint cluster region protein (Bcr), a Rho GTPase regulator, was identified as a Hap1-interacting partner. Bcr was co-immunoprecipitated with Hap1 from transfected neuro-2a cells and co-localized with Hap1A isoform more in the differentiated than in the nondifferentiated cells. The Bcr downstream effectors, namely ERK and p38, were significantly less activated in Hap1-null than in wild-type mouse hypothalamus. In conclusion, Hap1 interacts with Bcr on microtubules to regulate neuronal differentiation. 相似文献
9.
10.
11.
12.
13.
R Pathak VD Delorme-Walker MC Howell AN Anselmo MA White GM Bokoch C Dermardirossian 《Developmental cell》2012,23(2):397-411
The exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear. Herein, we present evidence that depletion of GEF-H1, a guanine nucleotide exchange factor for Rho proteins, affects vesicle trafficking. Interestingly, we found that GEF-H1 directly binds to exocyst component Sec5 in a Ral GTPase-dependent manner. This interaction promotes RhoA activation, which then regulates exocyst assembly/localization and exocytosis. Taken together, our work defines a mechanism for RhoA activation in response to RalA-Sec5 signaling and involvement of GEF-H1/RhoA pathway in the regulation of vesicle trafficking. 相似文献
14.
Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling. 相似文献
15.
16.
Claudia Doberenz Michael Zorn Dörte Falke David Nannemann Doreen Hunger Lydia Beyer Christian H. Ihling Jens Meiler Andrea Sinz R. Gary Sawers 《Journal of molecular biology》2014
The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in enterobacteria and other microbes, interacts specifically with FocA. Association of PflB with the cytoplasmic membrane was shown to be FocA dependent and purified, Strep-tagged FocA specifically retrieved PflB from Escherichia coli crude extracts. Using a bacterial two-hybrid system, it could be shown that the N-terminus of FocA and the central domain of PflB were involved in the interaction. This finding was confirmed by chemical cross-linking experiments. Using constraints imposed by the amino acid residues identified in the cross-linking study, we provide for the first time a model for the FocA–PflB complex. The model suggests that the N-terminus of FocA is important for interaction with PflB. An in vivo assay developed to monitor changes in formate levels in the cytoplasm revealed the importance of the interaction with PflB for optimal translocation of formate by FocA. This system represents a paradigm for the control of activity of FNT channel proteins. 相似文献
17.
Jianping Zhao Yongjun Zhang Sujay Subbayya Ithychanda Yizeng Tu Ka Chen Jun Qin Chuanyue Wu 《The Journal of biological chemistry》2009,284(49):34308-34320
Integrin-mediated cell-extracellular matrix (ECM) adhesion is essential for protection of epithelial cells against apoptosis, but the underlying mechanism is incompletely understood. Here we show that migfilin, an integrin-proximal adaptor protein, interacts with Src and contributes to cell-ECM-mediated survival signaling. Loss of cell-ECM adhesion markedly reduces the migfilin level in untransformed epithelial cells and concomitantly induces apoptosis. Overexpression of migfilin substantially desensitizes cell detachment-induced apoptosis. Conversely, depletion of migfilin promotes apoptosis despite the presence of cell-ECM adhesion. At the molecular level migfilin directly interacts with Src, and the migfilin binding surface overlaps with the inhibitory intramolecular interaction sites in Src. Consequently, the binding of migfilin activates Src, resulting in suppression of apoptosis. Our results reveal a novel mechanism by which cell-ECM adhesion regulates Src activation and survival signaling. This migfilin-mediated signaling pathway is dysfunctional in multiple types of carcinoma cells, which likely contributes to aberrant Src activation and anoikis resistance in the cancerous cells. 相似文献
18.
Fei He Wen-Chao Nie Zongtian Tong Si-Min Yuan Ting Gong Yuan Liao Erfei Bi Xiang-Dong Gao 《PloS one》2015,10(4)
In budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a. 538-1007) segment. Overexpression of Rga1-C538 but not full-length Rga1 severely impaired growth and cell morphology in wild-type cells. We show that Rga1 is phosphorylated during the cell cycle. The lack of phenotype for full-length Rga1 upon overexpression may result from a negative regulation by G1-specific Pho85, a cyclin-dependent kinase (CDK). From a high-copy suppressor screen, we isolated RHO3, SEC9, SEC1, SSO1, SSO2, and SRO7, genes involved in exocytosis, as suppressors of the growth defect caused by Rga1-C538 overexpression. Moreover, we detected that Rga1 interacts with Rho3 in two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Rga1 preferentially interacts with the GTP-bound form of Rho3 and the interaction requires the GAP domain and additional sequence upstream of the GAP domain. Our data suggest that the interaction of Rga1 with Rho3 may regulate Rho3’s function in polarized bud growth. 相似文献
19.
Axin is a critical component of the β-catenin destruction complex and is also necessary for Wnt signaling initiation at the level of co-receptor activation. Axin contains an RGS domain, which is similar to that of proteins that accelerate the GTPase activity of heterotrimeric Gα/Gna proteins and thereby limit the duration of active G-protein signaling. Although G-proteins are increasingly recognized as essential components of Wnt signaling, it has been unclear whether this domain of Axin might function in G-protein regulation. This study was performed to test the hypothesis that Axin RGS-Gna interactions would be required to attenuate Wnt signaling. We tested these ideas using an axin1 genetic mutant (masterblind) and antisense oligo knockdowns in developing zebrafish and Xenopus embryos. We generated a point mutation that is predicted to reduce Axin-Gna interaction and tested for the ability of the mutant forms to rescue Axin loss-of-function function. This Axin point mutation was deficient in binding to Gna proteins in vitro, and was unable to relocalize to the plasma membrane upon Gna overexpression. We found that the Axin point mutant construct failed to rescue normal anteroposterior neural patterning in masterblind mutant zebrafish, suggesting a requirement for G-protein interactions in this context. We also found that the same mutant was able to rescue deficiencies in maternal axin1 loss-of-function in Xenopus. These data suggest that maternal and zygotic Wnt signaling may differ in the extent of Axin regulation of G-protein signaling. We further report that expression of a membrane-localized Axin construct is sufficient to inhibit Wnt/β-catenin signaling and to promote Axin protein turnover. 相似文献
20.
KD Henley KA Gooding AN Economides M Gannon 《American journal of physiology. Endocrinology and metabolism》2012,303(6):E752-E761
Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress. 相似文献