首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The primary specificity residue of a substrate or an inhibitor, called the P(1) residue, is responsible for the proper recognition by the cognate enzyme. This residue enters the S(1) pocket of the enzyme and establishes contacts (up to 50%) inside the proteinase substrate cavity, strongly affecting its specificity. To analyze the influence on bovine alpha-chymotrypsin substrate activity, aromatic non-proteinogenic amino acid residues in position P(1) with the sequence Ac-Phe-Ala-Thr-X-Anb(5,2)-NH(2) were introduced: L-pyridyl alanine (Pal), 4-nitrophenylalanine - Phe(p-NO(2)), 4-aminophenylalanine - Phe(p-NH(2)), 4-carboxyphenylalanine Phe(p-COOH), 4-guanidine phenylalanine - Phe(p-guanidine), 4-methyloxycarbonyl-phenylalanine - Phe(p-COOMe), 4-cyanophenylalanine - Phe(p-CN), Phe, Tyr. The effect of the additional substituent at the phenyl ring of the Phe residue was investigated. All peptides contained an amide of 5-amino-2-nitrobenzoic acid, which served as a chromophore. Kinetic parameters (k(cat), K(M) and k(cat)/K(M)) of the peptides synthesized with bovine alpha-chymotrypsin were determined. The highest value of the specificity constant k(cat)/K(M), reaching 6.0 x 10(5) [M(-1)xs(-1)], was obtained for Ac-Phe-Ala-Thr-Phe(p-NO(2))-Anb(5,2)-NH(2). The replacement of the acetyl group with benzyloxycarbonyl moiety yielded a substrate with the value of k(cat) more than three times higher. Peptide aldehydes were synthesized with selected residues (Phe, Pal, Tyr, Phe(p-NO(2)) in position P(1) and potent chymotrypsin inhibitors were obtained. The dissociation constant (K(i)) with the experimental enzyme determined for the most active peptide, Tos-Phe-Ala-Thr-Phe(p-NO(2))-CHO, amounted to 1.12 x 10(-8) M.  相似文献   

2.
The closely related zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16) cleave many common substrates, including bradykinin (BK). As such, there are few substrate-based inhibitors which are sufficiently selective to distinguish their activities. We have used BK analogues with either alanine or beta-amino acid (containing an additional carbon within the peptide backbone) substitutions to elucidate subtle differences in substrate specificity between the enzymes. The cleavage of the analogues by recombinant EP24.15 and EP24.16 was assessed, as well as their ability to inhibit the two enzymes. Alanine-substituted analogues were generally better substrates than BK itself, although differences between the peptidases were observed. Similarly, substitution of the four N-terminal residues with beta-glycine enhanced cleavage in some cases, but not others. beta-Glycine substitution at or near the scissile bond (Phe5-Ser6) completely prevented cleavage by either enzyme: interestingly, these analogues still acted as inhibitors, although with very different affinities for the two enzymes. Also of interest, beta-Gly8-BK was neither a substrate nor an inhibitor of EP24.15, yet could still interact with EP24.16. Finally, while both enzymes could be similarly inhibited by the D-stereoisomer of beta-C3-Phe5-BK (IC50 approximately 20 microM, compared to 8 microM for BK), EP24.16 was relatively insensitive to the L-isomer (IC50 12 approximately microM for EP24.15, >40 microM for EP24.16). These studies indicate subtle differences in substrate specificity between EP24.15 and EP24.16, and suggest that beta-amino acid analogues may be useful as templates for the design of selective inhibitors.  相似文献   

3.
Endopeptidase 24.15 (EC 3.4.24.15; EP24.15) and endopeptidase 24.16 (EC 3.4.24.16; EP24.16) are enzymes involved in general peptide metabolism in mammalian cells and tissues. This review will focus on morphological and biochemical aspects related to the subcellular distribution and secretion of these homologous enzymes in the central nervous system. These are important issues for a better understanding of the functions of EP24.15 and EP24.16 within neuroendocrine systems.  相似文献   

4.
The two closely related soluble zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16) readily hydrolyze the vasoactive peptide bradykinin in vitro, and therefore may play a role in cardiovascular regulation. Although primarily soluble cytosolic enzymes, both secreted and membrane-associated forms of both peptidases have been reported. However, these enzymes have neither a transmembrane domain nor a signal sequence; thus, the mechanisms of membrane anchoring and secretion are unknown. In the present study, secreted/released EP24.15 and EP24.16 activity from aortic endothelial cells in culture was assessed by the cleavage of a specific quenched fluorescent substrate. An increase in enzyme activity released from endothelial cells, which express both peptidases, was seen following incubation with calcium-free media. In the AtT-20 endocrine cell (mouse pituitary corticotrope), which predominantly expresses EP24.15, the release of activity into media was unaffected by calcium removal. The release of enzyme activity from endothelial cells was inversely proportional to calcium concentrations ranging between 0.01 mM (activity equivalent to calcium-free media) and 0.5 mM (activity equivalent to normal media). Cleavage of the EP24.16-specific substrate AcNT8-13 indicated that the increase in enzyme activity released upon incubation with calcium-free medium was due at least in part to the release of EP24.16. These results suggest that EP24.15 and EP24.16 are secreted from endothelial cells, and that removal of calcium selectively enhances the release of EP24.16 by an as yet unknown mechanism.  相似文献   

5.
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) and neurolysin (EC 3.4.24.16; EP24.16) are closely related enzymes involved in the metabolic inactivation of bioactive peptides. Both of these enzymes were previously shown to be secreted from a variety of cell types, although their primary sequence lacks a signal peptide. To investigate the mechanisms responsible for this secretion, we examined by confocal microscopy the subcellular localization of these two enzymes in the neuroendocrine cell line AtT20. Both EP24.15 and EP24.16 were found by immunohistochemistry to be abundantly expressed in AtT20 cells. Western blotting experiments confirmed that the immunoreactivity detected in the soma of these cells corresponded to previously cloned isoforms of the enzymes. At the subcellular level, both enzymes colocalized extensively with the integral trans-Golgi network protein, syntaxin-6, in the juxtanuclear region. In addition, both EP24.15 and EP24.16 were found within small vesicular organelles distributed throughout the cell body. Some, but not all, of these organelles also stained positively for ACTH. These results demonstrate that both EP24.15 and EP24.16 are present within the classical secretory pathway. Their colocalization with ACTH further suggests that they may be targeted to the regulated secretory pathway, even in the absence of a signal peptide.  相似文献   

6.
Summary The two closely related soluble zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP24.16) readily hydrolyze the vasocative peptide bradykinin in vitro, and therefore may play a role in cardiovascular regulation. Although primarily soluble cytosolic enzymes, both secreted and membrane-associated forms of both peptidases have been reported. However, these enzymes have neither a transmembrane domain nor a signal sequence; thus, the mechanisms of membrane anchoring and secretion are unknown. In the present study, secreted/released EP24.15 and EP24.16 activity from aortic endothelial cells in culture was assessed by the cleavage of a specific quenched fluorescent substrate. An increase in enzyme activity released from endothelial cells, which express both peptidases, was seen following incubation with calcium-free media. In the AtT-20 endocrine cell (mouse pituitary corticotrope), which predominantly expresses EP24.15, the release of activity into media was unaffected by calcium removal. The release of enzyme activity from endothelial cells was inversely proportional to calcium concentrations ranging between 0.01 mM (activity equivalent to calcium-free media) and 0.5 mM (activity equivalent to normal media). Cleavage of the EP24.16-specific substrate AcNT8–13 indicated that the increase in enzyme activity released upon incubation with calcium-free medium was due at least in part to the release of EP24.16. These results suggest that EP24.15 and EP24.16 are secreted from endothelial cells, and that removal of calcium selectively enhances the release of EP24.16 by an as yet unknown mechanism.  相似文献   

7.
Internally quenched fluorescent peptides derived from neurotensin (pELYENKPRRPYIL) sequence were synthesized and assayed as substrates for neurolysin (EC 3.4.24.16), thimet oligopeptidase (EC 3.4.24.15 or TOP), and neprilysin (EC 3.4.24.11 or NEP). Abz-LYENKPRRPYILQ-EDDnp (where EDDnp is N-(2,4-dinitrophenyl)ethylenediamine and Abz is ortho-aminobenzoic acid) was derived from neurotensin by the introduction of Q-EDDnp at the C-terminal end of peptide and by the substitution of the pyroglutamic (pE) residue at N-terminus for Abz and a series of shorter peptides was obtained by deletion of amino acids residues from C-terminal, N-terminal, or both sides. Neurolysin and TOP hydrolyzed the substrates at P--Y or Y--I or R--R bonds depending on the sequence and size of the peptides, while NEP cleaved P-Y or Y-I bonds according to its S'(1) specificity. One of these substrates, Abz-NKPRRPQ-EDDnp was a specific and sensitive substrate for neurolysin (k(cat) = 7.0 s(-1), K(m) = 1.19 microM and k(cat)/K(m) = 5882 mM(-1). s(-1)), while it was completely resistant to NEP and poorly hydrolyzed by TOP and also by prolyl oligopeptidase (EC 3.4.21.26). Neurolysin concentrations as low as 1 pM were detected using this substrate under our conditions and its analogue Abz-NKPRAPQ-EDDnp was hydrolyzed by neurolysin with k(cat) = 14.03 s(-1), K(m) = 0.82 microM, and k(cat)/K(m) = 17,110 mM(-1). s(-1), being the best substrate so far described for this peptidase.  相似文献   

8.
The metalloendopeptidase EC (EP24.15) is a neuropeptide-metabolizing enzyme expressed predominantly in brain, pituitary, and testis, and is implicated in several physiological processes and diseases. Multiple putative phosphorylation sites in the primary sequence led us to investigate whether phosphorylation effects the specificity and/or the kinetics of substrate cleavage. Only protein kinase A (PKA) treatment resulted in serine phosphorylation with a stoichiometry of 1.11 +/- 0.12 mol of phosphate/mol of recombinant rat EP24.15. Mutation analysis of each putative PKA site, in vitro phosphorylation, and phosphopeptide mapping indicated serine 644 as the phosphorylation site. Phosphorylation effects on catalytic activity were assessed using physiological (GnRH, GnRH(1-9), bradykinin, and neurotensin) and fluorimetric (MCA-PLGPDL-Dnp and orthoaminobenzoyl-GGFLRRV-Dnp-edn) substrates. The most dramatic change upon PKA phosphorylation was a substrate-specific, 7-fold increase in both K(m) and k(cat) for GnRH. In both rat PC12 and mouse AtT-20 cells, EP24.15 was serine-phosphorylated, and EP24.15 phosphate incorporation was enhanced by forskolin treatment, and attenuated by H89, consistent with PKA-mediated phosphorylation. Cloning of the full-length mouse EP24.15 cDNA revealed 96.7% amino acid identity to the rat sequence, and conservation at serine 644, consistent with its putative functional role. Therefore, PKA phosphorylation is suggested to play a regulatory role in EP24.15 enzyme activity.  相似文献   

9.
Adenosine phosphorylase, a purine nucleoside phosphorylase endowed with high specificity for adenine nucleosides, was purified 117-fold from vegetative forms of Bacillus cereus. The purification procedure included ammonium sulphate fractionation, pH 4 treatment, ion exchange chromatography on DEAE-Sephacel, gel filtration on Sephacryl S-300 HR and affinity chromatography on N(6)-adenosyl agarose. The enzyme shows a good stability to both temperature and pH. It appears to be a homohexamer of 164+/-5 kDa. Kinetic characterization confirmed the specificity of this phosphorylase for 6-aminopurine nucleosides. Adenosine was the preferred substrate for nucleoside phosphorolysis (k(cat)/K(m) 2.1x10(6) s(-1) M(-1)), followed by 2'-deoxyadenosine (k(cat)/K(m) 4.2x10(5) s(-1) M(-1)). Apparently, the low specificity of adenosine phosphorylase towards 6-oxopurine nucleosides is due to a slow catalytic rate rather than to poor substrate binding.  相似文献   

10.
Hardy LW  Kirsch JF 《Biochemistry》1984,23(6):1275-1282
The Bacillus cereus beta-lactamase I catalyzes the hydrolysis of a wide variety of penicillins and cephalosporins with values of k(cat)/K(m) varying over several orders of magnitude. The values of this parameter for the most reactive of these compounds, benzylpenicillin, I, and furylacryloyl-penicillin, II (k(cat)/K(m) = 2.43 x 10(7) M(-1) s(-1) and 2.35 x 10(7) M(-1) s(-1), respectively, at pH 7.0 in potassium phosphate buffer containing 0.17 M KCl, I(c) = 0.63, 25 degrees C) are decreased markedly by increasing viscosity in sucrose- or glycerol-containing buffers. The relative sensitivities to viscosity of k(cat)/K(m) values for I and for cephaloridine, III, were found to be virtually unchanged at pH 3.8 from those observed at pH 7.0. The differential effects of viscosity on the reactive vs. the sluggish [e.g., cephalothin (IV), k(cat)/K(m) = 1 x 10(4) M(-1) s(-1)] substrates support the contention that the rates of reaction of the former with the enzyme are in part diffusion controlled. Quantitative analysis gives values for the association rate constants, k(1), of 7.6 x 10(7) M(-1) s(-1), 4 x 10(7) M(-1) s(-1), and 1.1 x 10(7) M(-1) s(-1) for I, II, and III, respectively. As both reactive and sluggish substrates associate with the active site of the enzyme with relatively similar rate constants, the variation in k(cat)/K(m) values is primarily due to the variation in the partition ratios k(-1)/k(2), for the ES complex, which are 2.3, 0.77, and 30 for I, II, and III, respectively. The preceding analysis is based on direct application of the Stokes-Einstein diffusion law to enzyme kinetics. The range of applicability of this law to the diffusion of substrate size molecules and the mechanics of diffusion of ionic species through viscous solutions of sucrose vs. polymers are explored.  相似文献   

11.
The zinc metalloendopeptidases EC 3.4.24.15 (EP24.15) and EC 3.4.24.16 (EP 24.16) are closely relatedubiquitous enzymes, which have well-defined in vitroactivities in generation and degradation of a range ofspecific peptide targets. Despite this, little is knownregarding their roles in whole animal physiology. One of thepeptides degraded by these enzymes in vitro isbradykinin, a mediator with potent effects on the vasculatureat both systemic and local levels. This review summarises thework that has examined the role of EP 24.15/24.16 inregulation of the vascular effects of bradykinin invivo. This work was made possible by the development of aspecific stable inhibitor of these enzymes, JA-2. Use of thisinhibitor has shown that EP 24.15/24.16 are capable ofregulating responses induced by exogenous bradykinin. Thiseffect was observed at a systemic level with an increase inthe hypotensive effect of intravenous bradykinin. Further workis required to determine whether these enzymes also regulatebradykinin produced endogenously.  相似文献   

12.
A soluble form of penicillin-binding protein 3 (PBP 3) from Neisseria gonorrhoeae was expressed and purified from Escherichia coli and characterized for its interaction with beta-lactam antibiotics, its catalytic properties with peptide and peptidoglycan substrates, and its role in cell viability and morphology. PBP 3 had an unusually high k(2)/K' value relative to other PBPs for acylation with penicillin (7.7 x 10(5) M(-1) s(-1)) at pH 8.5 at 25 degrees C and hydrolyzed bound antibiotic very slowly (k(3) < 4.6 x 10(-5) s(-1), t(1/2) > 230 min). PBP 3 also demonstrated exceptionally high carboxypeptidase activity with a k(cat) of 580 s(-1) and a k(cat)/K(m) of 1.8 x 10(5) M(-1) s(-1) with the substrate N(alpha)-Boc-N(epsilon)-Cbz-L-Lys-D-Ala-D-Ala. This is the highest k(cat) value yet reported for a PBP or other serine peptidases. Activity against a approximately D-Ala-D-Lac peptide substrate was approximately 2-fold lower than against the analogous approximately D-Ala-D-Ala peptide substrate, indicating that deacylation is rate determining for both amide and ester hydrolysis. The pH dependence profiles of both carboxypeptidase activity and beta-lactam acylation were bell-shaped with maximal activity at pH 8.0-8.5. PBP 3 displayed weak transpeptidase activity in a model transpeptidase reaction but was active as an endopeptidase, cleaving dimeric peptide cross-links. Deletion of PBP 3 alone had little effect on viability, growth rate, and morphology of N. gonorrhoeae, although deletion of both PBP 3 and PBP 4, the other low-molecular-mass PBP in N. gonorrhoeae, resulted in a decreased growth rate and marked morphological abnormalities.  相似文献   

13.
Bradykinin is a vasoactive peptide that has been shown to increase the permeability of the cerebral microvasculature to blood-borne macromolecules. The two zinc metalloendopeptidases EC (EP 24.15) and EC (EP 24.16) degrade bradykinin in vitro and are highly expressed in the brain. However, the role that these enzymes play in bradykinin metabolism in vivo remains unclear. In the present study, we investigated the role of EP 24.15 and EP 24.16 in the regulation of bradykinin-induced alterations in microvascular permeability. Permeability of the cerebral microvasculature was assessed in anesthetized Sprague-Dawley rats by measuring the clearance of 70-kDa FITC dextran from the brain. Inhibition of EP 24.15 and EP 24.16 by the specific inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) resulted in the potentiation of bradykinin-induced increases in cerebral microvessel permeability. The level of potentiation was comparable to that achieved by the inhibition of angiotensin-converting enzyme. These findings provide the first evidence of an in vivo role for EP 24.15/EP 24.16 in brain function, specifically in regulating alterations in microvessel permeability induced by exogenous bradykinin.  相似文献   

14.
The cytotoxic lymphocyte serine proteinase granzyme B induces apoptosis of abnormal cells by cleaving intracellular proteins at sites similar to those cleaved by caspases. Understanding the substrate specificity of granzyme B will help to identify natural targets and develop better inhibitors or substrates. Here we have used the interaction of human granzyme B with a cognate serpin, proteinase inhibitor 9 (PI-9), to examine its substrate sequence requirements. Cleavage and sequencing experiments demonstrated that Glu(340) is the P1 residue in the PI-9 RCL, consistent with the preference of granzyme B for acidic P1 residues. Ala-scanning mutagenesis demonstrated that the P4-P4' region of the PI-9 RCL is important for interaction with granzyme B, and that the P4' residue (Glu(344)) is required for efficient serpin-proteinase binding. Peptide substrates based on the P4-P4' PI-9 RCL sequence and containing either P1 Glu or P1 Asp were cleaved by granzyme B (k(cat)/K(m) 9.5 x 10(3) and 1.2 x 10(5) s(-1) M(-1), respectively) but were not recognized by caspases. A substrate containing P1 Asp but lacking P4' Glu was cleaved less efficiently (k(cat)/K(m) 5.3 x 10(4) s(-1) M(-1)). An idealized substrate comprising the previously described optimal P4-P1 sequence (Ile-Glu-Pro-Asp) fused to the PI-9 P1'-P4' sequence was efficiently cleaved by granzyme B (k(cat)/K(m) 7.5 x 10(5) s(-1) M(-1)) and was also recognized by caspases. This contrasts with the literature value for a tetrapeptide comprising the same P4-P1 sequence (k(cat)/K(m) 6.7 x 10(4) s(-1) M(-1)) and confirms that P' residues promote efficient interaction of granzyme B with substrates. Finally, molecular modeling predicted that PI-9 Glu(344) forms a salt bridge with Lys(27) of granzyme B, and we showed that a K27A mutant of granzyme B binds less efficiently to PI-9 and to substrates containing a P4' Glu. We conclude that granzyme B requires an extended substrate sequence for specific and efficient binding and propose that an acidic P4' substrate residue allows discrimination between early (high affinity) and late (lower affinity) targets during the induction of apoptosis.  相似文献   

15.
Histamine dehydrogenase (NSHADH) can be isolated from cultures of Nocardioides simplex grown with histamine as the sole nitrogen source. A previous report suggested that NSHADH might contain the quinone cofactor tryptophan tryptophyl quinone (TTQ). Here, the hdh gene encoding NSHADH is cloned from the genomic DNA of N. simplex, and the isolated enzyme is subjected to a full spectroscopic characterization. Protein sequence alignment shows NSHADH to be related to trimethylamine dehydrogenase (TMADH: EC 1.5.99.7), where the latter contains a bacterial ferredoxin-type [4Fe-4S] cluster and 6-S-cysteinyl FMN cofactor. NSHADH has no sequence similarity to any TTQ containing amine dehydrogenases. NSHADH contains 3.6+/-0.3 mol Fe and 3.7+/-0.2 mol acid labile S per subunit. A comparison of the UV/vis spectra of NSHADH and TMADH shows significant similarity. The EPR spectrum of histamine reduced NSHADH also supports the presence of the flavin and [4Fe-4S] cofactors. Importantly, we show that NSHADH has a narrow substrate specificity, oxidizing only histamine (K(m)=31+/-11 microM, k(cat)/K(m)=2.1 (+/-0.4)x10(5)M(-1)s(-1)), agmatine (K(m)=37+/-6 microM, k(cat)/K(m)=6.0 (+/-0.6)x10(4)M(-1)s(-1)), and putrescine (K(m)=1280+/-240 microM, k(cat)/K(m)=1500+/-200 M(-1)s(-1)). A kinetic characterization of the oxidative deamination of histamine by NSHADH is presented that includes the pH dependence of k(cat)/K(m) (histamine) and the measurement of a substrate deuterium isotope effect, (D)(k(cat)/K(m) (histamine))=7.0+/-1.8 at pH 8.5. k(cat) is also pH dependent and has a reduced substrate deuterium isotope of (D)(k(cat))=1.3+/-0.2.  相似文献   

16.
Meyer-Almes FJ  Auer M 《Biochemistry》2000,39(43):13261-13268
A new mathematical formalism is deduced which allows for the calculation of the k(cat) over K(M) ratio based on measurements of the enzyme kinetics with substrate concentrations much lower than K(M). The equations are also applied on the action of an inhibitor on enzyme activity yielding the binding constant, K(i), of an inhibitor molecule. For practical evaluation of the new theoretical approach, the enzymatic reaction of CD45 phosphatase was used as a well-characterized model system with known inhibitors for testing the K(i) value determination scheme. The k(cat)/K(M) ratio was calulated to be 4.7 x 10(5) M(-)(1) s(-)(1), the K(i) of the inhibitor molecule PKF52-524 was estimated to be (1-2) x 10(-)(7) M and the association rate of the inhibitor PKF52-524 to CD45 phosphatase was estimated to be 59 M(-)(1) s(-)(1).  相似文献   

17.
Members of the saframycin/safracin/ecteinascidin family of peptide natural products are potent antitumor agents currently under clinical development. Saframycin MX1, from Myxococcus xanthus, is synthesized by a nonribosomal peptide synthetase, SafAB, and an O-methyltransferase, SafC, although other proteins are likely involved in the pathway. SafC was overexpressed in Escherichia coli, purified to homogeneity, and assayed for its ability to methylate a variety of substrates. SafC was able to catalyze the O-methylation of catechol derivatives but not phenols. Among the substrates tested, the best substrate for SafC was L-dihydroxyphenylalanine (L-dopa), which was methylated specifically in the 4'-O position (k(cat)/K(m) = 5.5 x 10(3) M(-1) s(-1)). SafC displayed less activity on other catechol derivatives, including catechol, dopamine, and caffeic acid. The more labile l-5'-methyldopa was an extremely poor substrate for SafC (k(cat)/K(m) = approximately 2.8 x 10(-5) M(-1) s(-1)). L-dopa thioester derivatives were also much less reactive than L-dopa. These results indicate that SafC-catalyzed 4'-O-methylation of L-dopa occurs prior to 5'-C-methylation, suggesting that 4'-O-methylation is likely the first committed step in the biosynthesis of saframycin MX1. SafC has biotechnological potential as a methyltransferase with unique regioselectivity.  相似文献   

18.
Steer D  Lew R  Perlmutter P  Smith AI  Aguilar MI 《Biochemistry》2002,41(35):10819-10826
The enzyme EC 3.4.24.15 (EP 24.15) is a zinc metalloendopeptidase whose precise function in vivo remains unknown but is thought to participate in the regulated metabolism of a number of specific neuropeptides. The lack of stable and selective inhibitors has hindered the determination of the exact function of EP 24.15. Of the limited number of EP 24.15 inhibitors that have been developed, N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (CFP) is the most widely studied. CFP is a potent and specific inhibitor, but it is unstable in vivo due to cleavage between the alanine and tyrosine residues by the enzyme neprilysin (EP 24.11). This cleavage by EP 24.11 generates a potent inhibitor of angiotensin converting enzyme, thereby limiting the use of CFP for in vivo studies. To develop specific inhibitors of EP 24.15 that are resistant to in vitro and potentially in vivo proteolysis by EP 24.11, this study incorporated beta-amino acids replacing the Ala-Tyr scissile alpha-amino acids of CFP. Both C2 and C3 substituted beta-amino acids were synthesized and substituted at the EP 24.11 scissile Ala-Tyr bond. Significant EP 24.15 inhibitory activity was observed with some of the beta-amino acid containing analogues. Moreover, binding to EP 24.11 was eliminated, thus rendering all analogues containing beta-amino acids resistant to degradation by EP 24.11. Selective inhibition of either EP 24.15 or EP 24.16 was also observed with some analogues. The results demonstrated the use of beta-amino acids in the design of inhibitors of EP 24.15 and EP 24.16 with K(i)'s in the low micromolar range. At the same time, these analogues were resistant to cleavage by the related metalloendopeptidase EP 24.11, in contrast to the alpha-amino acid based parent peptide. This study has therefore clearly shown the potential of beta-amino acids in the design of stable enzyme inhibitors and their use in generating molecules with selectivity between closely related enzymes.  相似文献   

19.
The crystal structure of the complex formed between recombinant yeast orotidine 5'-phosphate decarboxylase and the competitive inhibitor 6-hydroxyuridine 5'-phosphate reveals the presence of four hydrogen bonds between active site residues Tyr-217 and Arg-235 and the phosphoryl group of this inhibitor. When Tyr-217 and Arg-235 are individually mutated to alanine, values of k(cat)/K(m) are reduced by factors of 3000- and 7300-fold, respectively. In the Y217A/R235A double mutant, activity is reduced more than 10(7)-fold. Experiments with highly enriched [(14)C]orotic acid show that when ribose 5'-phosphate is deleted from substrate orotidine 5'-phosphate, k(cat)/K(m) is reduced by more than 12 orders of magnitude, from 6.3 x 10(7) M(-1) s(-1) for OMP to less than 2.5 x 10(-5) M(-1) s(-1) for orotic acid. Activity toward orotate is not "rescued" by 1 M inorganic phosphate. The K(i) value of ribose 5'-phosphate, representing the part of the natural substrate that is absent in orotic acid, is 8.1 x 10(-5) M. Thus, the effective concentration of the 5'-phosphoribosyl group, in stabilizing the transition state for enzymatic decarboxylation of OMP, is estimated to be >2 x 10(8) M, representing one of the largest connectivity effects that has been reported for an enzyme reaction.  相似文献   

20.
Hypersensitive substrate for ribonucleases.   总被引:4,自引:1,他引:3       下载免费PDF全文
A substrate for a hypersensitive assay of ribonucleolytic activity was developed in a systematic manner. This substrate is based on the fluorescence quenching of fluorescein held in proximity to rhodamine by a single ribonucleotide embedded within a series of deoxynucleotides. When the substrate is cleaved, the fluorescence of fluorescein is manifested. The optimal substrate is a tetranucleotide with a 5',6-carboxyfluorescein label (6-FAM) and a 3',6-carboxy-tetramethylrhodamine (6-TAMRA) label: 6-FAM-dArUdAdA-6-TAMRA. The fluorescence of this substrate increases 180-fold upon cleavage. Bovine pancreatic ribonuclease A (RNase A) cleaves this substrate with a k (cat)/ K (m)of 3.6 x 10(7)M(-1)s(-1). Human angiogenin, which is a homolog of RNase A that promotes neovascularization, cleaves this substrate with a k (cat)/ K (m)of 3. 3 x 10(2)M(-1)s(-1). This value is >10-fold larger than that for other known substrates of angio-genin. With these attributes, 6-FAM-dArUdAdA-6-TAMRA is the most sensitive known substrate for detecting ribo-nucleolytic activity. This high sensitivity enables a simple protocol for the rapid determination of the inhibition constant ( K (i)) for competitive inhibitors such as uridine 3'-phosphate and adenosine 5'-diphos-phate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号