首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? Premise of the study: The development of biased sex ratios in dioecious plant species has been ascribed to either (1) factors influencing differential adult mortality of male and female plants or (2) factors acting at an early life stage that determine seed sex ratio or seedling survival. ? Methods: To discriminate between these two competing hypotheses, we surveyed sex and age of 379 individuals from five species of the genus Salix across 11 alpine valleys in the southwest Yukon. ? Key results: We observed uniformly female-biased sex ratios of approximately 2:1 across all adult age cohorts and patch sizes of the five willow species. No spatial variation in sex ratio occurred that could be associated with site-specific characteristics such as elevation or aspect. ? Conclusions: Our results indicate that the female-biased sex ratios in the alpine willow species investigated in this study are not a consequence of ecological processes acting on established adult plants. The sex ratio is instead determined at an early life stage by a mechanism that remains unknown.  相似文献   

2.
A sex-ratio bias was studied in alates of natural polygyne colonies of Solenopsis invicta Buren in southern China. The results showed that at the population level, the numbers of male and female alates were nearly equal, even though there was a strong bias toward producing one particular sex at the nest level. For example, 88.89% of the nests sampled were strongly biased toward males or females. In particular, three bias types were observed: extreme female bias, extreme male bias, and a moderate bias. Future studies should address the factors that lead queens to produce strongly biased sex ratios.  相似文献   

3.
Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon (Amphibolurus muricatus) is an attractive model species for the study of gene–environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in A. muricatus. The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species Pogona vitticeps. Here, we present the first developmental data for A. muricatus, and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.  相似文献   

4.
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex‐determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large‐scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female‐biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex‐determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild‐caught male and female adults, except in one high‐altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex‐chromosome differentiation in amphibians.  相似文献   

5.
Five gynogenetic progeny groups of silver crucian carp Carassius auratus gibelio were produced and sex ratios (males:total progeny) of each of the progeny groups were analysed. About 110 males and 366 females were genotyped at 15 microsatellite loci for comparison with their parents to (1) verify the gynogenesis status of Fangzheng C. auratus gibelio, (2) detect the incorporation of paternal genetic material into the offspring and (3) study the possible association of genetic exchange at microsatellite loci with the existence of sex. The sex ratios in progenies of five groups were highly variable, but all had significant female bias. The sex ratio ranged from 0 to 0·37. Significant differences in the sex ratio within and between groups were also found. Microsatellite genotyping at 15 loci showed that 100 and 97% of the progeny shared the same genotype with the mother in four groups and in one group, respectively, confirming that gynogenesis is the general mechanism of reproduction in C. auratus gibelio. However, 0·63% of all offspring did show incorporation of paternal genetic material. No single loci tested were associated with the occurrence of male progeny, indicating unknown genetic mechanisms for sex determination in C. auratus gibelio.  相似文献   

6.
Sex‐determining systems are remarkably diverse and may evolve rapidly. Polygenic sex‐determination systems are predicted to be transient and evolutionarily unstable, yet examples have been reported across a range of taxa. Here, we provide the first direct evidence of polygenic sex determination in Tigriopus californicus, a harpacticoid copepod with no heteromorphic sex chromosomes. Using genetically distinct inbred lines selected for male‐ and female‐biased clutches, we generated a genetic map with 39 SNPs across 12 chromosomes. Quantitative trait locus mapping of sex ratio phenotype (the proportion of male offspring produced by an F2 female) in four F2 families revealed six independently segregating quantitative trait loci on five separate chromosomes, explaining 19% of the variation in sex ratios. The sex ratio phenotype varied among loci across chromosomes in both direction and magnitude, with the strongest phenotypic effects on chromosome 10 moderated to some degree by loci on four other chromosomes. For a given locus, sex ratio phenotype varied in magnitude for individuals derived from different dam lines. These data, together with the environmental factors known to contribute to sex determination, characterize the underlying complexity and potential lability of sex determination, and confirm the polygenic architecture of sex determination in T. californicus.  相似文献   

7.
At Arapaho Prairie, in the sandhills of western Nebraska, the dioecious annual Croton texensis (Euphorbiaceae) exhibits biased sex ratios. Moreover, the direction of bias changes from year to year: in 1994 the study population was significantly female biased, in 1995 and 1996 it was significantly male biased, and in 1997 and 1998 the sex ratio did not differ from 1 : 1. Such variation in the observed sex ratio in plants is frequently attributed to environmental sex determination (ESD), which is favored by natural selection if the rate of fitness gain across an environmental gradient is greater for one sex than the other. We performed experiments to determine: (1) whether variation in the sex ratio is correlated with environmental conditions, as would be expected if ESD is operating, and (2) whether ESD, if present, would be favored by natural selection. In a common garden experiment in which water and fertilizer were manipulated the sex ratio was marginally male biased in treatments in which water was added, but not different from 1 : 1 in other treatments. In field plots into which seeds were planted none of several soil characteristics, nor overall plot quality for C. texensis (measured as average plant biomass) were correlated with plot sex ratio. However, plots in which a large number of planted seeds emerged tended to be female biased. These results provide very weak evidence for sex ratio bias across an environmental gradient, and thus provide little evidence for ESD. Moreover, sex-by-environment interactions for fitness, which are required for the evolution of ESD, were absent for all measured variables. Thus, ESD does not appear to be favored by natural selection in this population. Instead, these biases may have been caused by differences between the sexes in germination and/or early mortality.  相似文献   

8.
A. B. Nicotra 《Oecologia》1998,115(1-2):102-113
Populations of dioecious plant species often exhibit biased sex ratios. Such biases may arise as a result of sex-based differences in life history traits, or as a result of spatial segregation of the sexes. Of these, sex-based differentiation in life history traits is likely to be the most common cause of bias. In dioecious species, selection can act upon the sexes in a somewhat independent way, leading to differentiation and evolution toward sex-specific ecological optima. I examined sex ratio variation and spatial distribution of the tropical dioecious shrub Siparuna grandiflora to determine whether populations exhibited a biased sex ratio, and if so, whether the bias could be explained in terms of non-random spatial distribution or sex-based differentiation in life history traits. Sex ratio bias was tested using contingency tables, a logistic regression approach was utilized to examine variation in life history traits, and spatial distributions were analyzed using Ripley's K, a second-order neighborhood analysis. I found that although populations of S. grandiflora have a male-biased sex ratio within and among years, there was no evidence of spatial segregation of the sexes. Rather, the sex ratio bias was shown to result primarily from sex-based differentiation in life history traits; males reproduce at a smaller size and more frequently than females. The sexes also differ in the relationship between plant size and reproductive frequency. Light availability was shown to affect reproductive activity in both sexes, though among infrequently flowering plants, females require higher light levels than males to flower. The results of this study demonstrate that ecologically significant sex-based differentiation has evolved in S. grandiflora. Received: 30 July 1997 / Accepted: 16 December 1997  相似文献   

9.
The extent to which sex ratio bias is a common reproductive characteristic of prosimians has not been well established. The present study analyzed reproduction in 13 breeding groups of captive prosimians for evidence of birth sex ratio bias. A substantial male bias was demonstrated in nongregarious, but not gregarious, breeding groups. Analyses of birth sex ratios of individual mothers suggested that the observed bias did not result from the tendency of a few mothers to overproduce males, but rather from a small but reliable excess of male births in general. An examination of infant mortality revealed that male Otolemur garnettii and Microcebus murinus infants were more vulnerable to preweaning mortality, whereas female Eulemur fulvus albifrons infants were more vulnerable. An analysis of birth order by sex found that mothers of one group (O. garnettii) tended to produce males initially and females later. Additionally, a distinct pattern of birth seasonality was noted among Malagasy prosimians that was absent in the African prosimians. Greater length of period of sexual receptivity for nongregarious females as compared to gregarious females is proposed as a possible mechanism of male birth sex ratio bias. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Despite extensive research on mechanisms generating biases in sex ratios, the capacity of natural enemies to shift or further skew operational sex ratios following sex allocation and parental care remains largely unstudied in natural populations. Male cocoons of the sawfly Neodiprion abietis (Hymenoptera: Diprionidae) are consistently smaller than those of females, with very little overlap, and thus, we were able to use cocoon size to sex cocoons. We studied three consecutive cohorts of N. abietis in six forest stands to detect cocoon volume‐associated biases in the attack of predators, pathogens, and parasitoids and examine how the combined effect of natural enemies shapes the realized operational sex ratio. Neodiprion abietis mortality during the cocoon stage was sex‐biased, being 1.6 times greater for males than females. Greater net mortality in males occurred because male‐biased mortality caused by a pteromalid parasitic wasp and a baculovirus was greater and more skewed than female‐biased mortality caused by ichneumonid parasitic wasps. Variation in the susceptibility of each sex to each family of parasitoids was associated with differences in size and life histories of male and female hosts. A simulation based on the data indicated that shifts in the nature of differential mortality have different effects on the sex ratio and fitness of survivors. Because previous work has indicated that reduced host plant foliage quality induces female‐biased mortality in this species, bottom‐up and top‐down factors acting on populations can affect operational sex ratios in similar or opposite ways. Shifts in ecological conditions therefore have the potential to alter progeny fitness and produce extreme sex ratio skews, even in the absence of unbalanced sex allocation. This would limit the capacity of females to anticipate the operational sex ratio and reliably predict the reproductive success of each gender at sex allocation.  相似文献   

11.
Negative frequency‐dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long‐lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex‐ratio variation in two chromosome races of Rumex hastatulus, an annual, wind‐pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female‐biased sex ratios. Female‐biased sex ratios characterized most populations of R.  hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high‐density populations had the highest proportion of females, whereas smaller, low‐density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female‐biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.  相似文献   

12.
Sex ratio variation is commonly observed in natural populations of many organisms with separate sexes and genetic sex determination, including bryophytes. Most bryophyte populations exhibit female-skewed expressed adult sex ratios, generally inferred from counts of sexually mature plants. For the rarely sexually reproducing perennial dioicous moss Drepanocladus lycopodioides, we showed that a female bias also exists in the genetic adult sex ratio, using a specifically designed molecular sex-associated marker. Here, we investigated whether the meiotic spore sex ratio contributes to the observed bias in genetic adult sex ratio in natural populations. Earlier attempts to study meiotic sex ratios have involved commonly cultivated ruderals that rapidly express sex in the laboratory. We established single-spore cultures from field-collected sporophytes from these populations and used the marker to assess the sex of individual sporelings. Spore germinability was (near) complete, and mortality among sporelings was virtually absent. The true meiotic sex ratio did not differ from equality, but strongly differed both from the observed genetic sex ratios in the natural adult populations, and from the European scale genetic sex ratio. We conclude that the biased population sex ratios in this species arise at life cycle stages after spore germination. Sexual dimorphism may selectively favour female proliferation during some phase of gametophyte development. Based on methodological progress, we successfully used a perennial study species with rare sexual reproduction, which significantly broadens the life history spectrum investigated in bryophyte sex ratio studies.  相似文献   

13.
Laboratory colonies of the eastern treehole mosquito (Ochlerotatus triseriatus (Say)) exhibit a consistent female-biased sex ratio. This is unusual among mosquito species, in which heritable sex ratio distortion is usually male biased and mediated by meiotic drive. Quantitative trait loci (QTL) affecting sex were mapped in an F(1) intercross to better understand the genetics underlying this female bias. In P(1) and F(1) parents and in 146 F(2) individuals with a female-biased sex ratio (106 females:40 males), regions of seven cDNA loci were analyzed with single-strand conformation polymorphism (SSCP) analysis to identify and orient linkage groups. Genotypes were also scored at 73 random amplified polymorphic DNA (RAPD)-SSCP loci. In addition to the sex locus, at least four QTL affecting sex determination were detected with interval mapping on linkage groups I and II. Alleles at the sex locus cumulatively accounted for approximately 61-77% of the genetic variance in sex. Alleles at QTL adjacent to the sex locus and at a QTL on the opposite end of linkage group I increased the proportion of females, but alleles at a QTL on linkage group I and a second QTL on linkage group II increased the proportion of males. The female-biased sex ratio observed in laboratory colonies of O. triseriatus is most easily explained by the existence of multiple female biased distorter loci, as have been observed in other Diptera.  相似文献   

14.
In a heterogeneous environment, when the fitness of males and females are differently influenced by habitat quality, habitat-dependent sex ratios may evolve to favor the production of the sex that benefits more (or loses less) from the local habitat. Similarly, sex-biased dispersal favors the evolution of habitat-dependent sex ratios. The present study documents the convergence stable sex ratios expected in the presence of sex-specific fitness gains when dispersal is partial, sex-biased or costly, using a simple model with patches of two qualities. Results show that partial dispersal reduces the sex ratio bias expected with sex-specific fitness gains. The direction of the sex ratio bias can be reversed by sex-biased dispersal or the existence of sex-specific dispersal costs, provided that fitness gains for the two sexes are not too different. The reversal of the sex ratio bias is more readily observed when sex-specific dispersal rates are opposite and extreme. Both dispersal and fitness gains, especially when they are sex-specific, should thus be considered when making predictions about sex ratio evolution in a heterogeneous environment.  相似文献   

15.
Male-biased sex ratios in adult odonate populations have been the subject of vigorous discussion between the students of this order of insects. The debate has centered on whether the observed male bias in many populations is real, perhaps due to unequal survival rates, or whether it is an artifact caused by differences in recapture probabilities. A mark–recapture study to assess the relative contribution of survivorship and recapture rates on male-biased sex ratio was performed in a Cuban population of the damselfly Hypolestes trinitatis. Maximum likelihood theory and Akaike information criterion were used for parameter estimation and model selection, respectively. Females in the sample were outnumbered two to one by males. Estimated recapture and survival rates were 0.188 (females) and 0.638 (males), and 0.933 (females) and 0.944 (males), respectively. Recapture rates only partially explained the bias since the population sex ratio estimated after correcting for differences in this parameter was male biased (1.5). The observed higher survival probabilities in males could have generated the male-biased population sex ratio. Therefore, we concluded that the observed male-biased population sex ratio in H. trinitatis is real.  相似文献   

16.
The Genetic Basis of Sex Ratio in Silene Alba (= S. Latifolia)   总被引:2,自引:1,他引:1       下载免费PDF全文
D. R. Taylor 《Genetics》1994,136(2):641-651
A survey of maternal families collected from natural populations showed that the sex ratio in Silene alba was slightly female biased. Sex ratio varied among populations and among families within a female biased population. Crosses among plants from the most female biased population and the most male biased population showed that the sex ratio polymorphism was inherited through or expressed in the male parent. Males from one family in particular exhibited a severe female bias, characterized by less than 20% male progeny. The inheritance of sex ratio was investigated using a reciprocal crossing design. Sex ratios from reciprocal crosses were significantly different, indicating either sex-linkage or cytoplasmic inheritance of sex ratio. The sex ratios produced by males generally resembled the sex ratios produced by their male parents, indicating that the sex ratio modifier was Y linked. The maternal parent also significantly influenced sex ratio through an interaction with the genotype of the paternal parent. Sex ratio, therefore, is apparently controlled by several loci. Although sex ratio bias in this species may be due to deleterious alleles on the Y chromosome, it is more likely to involve an interaction between loci that cause the female bias and a Y-linked locus that enhances the proportion of males in the progeny.  相似文献   

17.
Selective exploitation can cause adverse ecological and evolutionary changes in wild populations and also affect sex ratios but few studies have empirically documented skewed sex ratios in exploited fishes (other than species with extreme sexual size dimorphism, SSD). To investigate the possibility of sex‐selective fishing on Alaskan sockeye salmon Oncorhynchus nerka, we assessed sex ratios in fish at two spatial scales: within each of five fishing districts and among 13 breeding populations in one of these districts. We predicted that populations’ sex ratios would vary based on the average size of fish and SSD because size affects vulnerability to fishing. At the larger scale, we found a small but significant bias in fish returning to four of the five fishing districts (average = 52% females), and in four of the five districts males were caught at significantly higher rates than females. At the finer scale there was marked variation in sex ratio on the breeding grounds, ranging from 36% to 47% males. Populations with fish of intermediate sizes experienced the greatest sex ratio biases; the greater vulnerability of males than females to fishing resulted from a combination of larger SSD and different harvest rates between the sexes associated with the fishery size‐selectivity curve shape. Skewed sex ratios may change competition and behavior on the breeding grounds, relaxing selection on male traits associated with mate choice by females or intra‐sexual competition and altering demographic and evolutionary pressures on the fish. Assessment of the size selectivity of fishing gear and the population's SSD can help to illuminate if and how exploitation can affect sex ratios. Future studies examining size‐selective fishing should also evaluate the consequences for sex ratios, as this might help explain changes in harvested population structure and sustainability.  相似文献   

18.
Skewed sex ratios are common among several species of Poeciliopsis, a viviparous fish from northwestern Mexico. Since previous, unrelated studies from this laboratory (Angus and Schultz, 1983) suggested that deviation from a 1:1 sex ratio might be influenced by temperature, two inbred strains of P. lucida were tested for temperature-dependent sex determination by comparing sex ratios of offspring from pregnant females held at different water temperatures. Different sex ratios were produced by the two strains at the same temperature: one strain produced almost all-male offspring at 30°C and female-biased sex ratios at 24°C, while the other strain produced a 1:1 sex ratio at both temperatures. At intermediate temperatures, the labile strain produced sequentially fewer males with decreasing temperatures. The other strain produced a consistent sex ratio regardless of temperature. Poeciliopsis lucida apparently has a genetic polymorphism for temperature-influenced sex determination. An hypothesis is offered for the evolutionary origin of environmental sex determination.  相似文献   

19.
The relationship between environmental factors, sex ratio and mating system in Daphnia magna was examined, and the adaptiveness of environmental sex determination over ametic sex determination was explored. Monthly sexual sex ratios (males over total number of males and sexual females) ranged from 0.31 to 1.0, the three-year average equalling 0.61. However, if only the samples collected during the period of frequent sexuality from August to October are included, the sexual sex ratio becomes equal, 0.51. Sexual sex ratios varied real between samples during the same period and the standard errors appeared highest in July ad August. Typical of suck times is some uncertainty in the environment, and the environmental cues can be contradictory. Sex expression in Daphnia appears to be determined by responses to complicated interactions between different environmental factors, which adaptively alter the sex ratio. The longterm sexual sex ratio of Daphnia aproaching the equilibrium 1:1, despite environmental sex %termination, gives support for Fisier's classic theory of equal parental investment in both sexes. An equal sex ratio is advantageous also during periods of small population size because it maximizes the effective population size.  相似文献   

20.
R. A. Fisher predicted that individuals should invest equally in offspring of both sexes, and that the proportion of males and females produced (the primary sex ratio) should evolve towards 1:1 when unconstrained. For many species, sex determination is dependent on sex chromosomes, creating a strong tendency for balanced sex ratios, but in other cases, multiple autosomal genes interact to determine sex. In such cases, the maintenance of multiple sex‐determining alleles at multiple loci and the consequent among‐family variability in sex ratios presents a puzzle, as theory predicts that such systems should be unstable. Theory also predicts that environmental influences on sex can complicate outcomes of genetic sex determination, and that population structure may play a role. Tigriopus californicus, a copepod that lives in splash‐pool metapopulations and exhibits polygenic and environment‐dependent sex determination, presents a test case for relevant theory. We use this species as a model for parameterizing an individual‐based simulation to investigate conditions that could maintain polygenic sex determination. We find that metapopulation structure can delay the degradation of polygenic sex determination and that periods of alternating frequency‐dependent selection, imposed by seasonal fluctuations in environmental conditions, can maintain polygenic sex determination indefinitely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号