首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomeres are the special heterochromatin that forms the ends of chromosomes, consisting of TTAGGG repeats and associated proteins. Telomeres protect the ends from degradation and recombination, and are essential for chromosomal stability. Both a minimal length of telomere repeats and the telomere-binding proteins are required for telomere protection. Telomerase is a DNA polymerase that specifically elongates telomeres, in this way regulating telomere length and function. A minimal telomere length is required to maintain tissue homeostasis. On one hand, critically short telomeres trigger loss of cell viability and premature death in mice deficient for telomerase activity. Furthermore, altered functioning of telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and cancer. A new mouse model with critically short telomeres has been generated by over-expressing the TRF2 telomere-binding protein, K5-TRF2 mice. These mice show short telomeres in the presence of telomerase activity, leading to premature aging and increased cancer. Short telomeres in TRF2 mice can be rescued in the absence of the XPF nuclease, indicating that this enzyme rapidly degrades telomeres in the presence of increased TRF2 expression. K5-TRF2 mice represent a new tool to understand the consequences of critical telomere shortening a telomerase-proficient genetic background, more closely resembling human cancer and aging pathologies.  相似文献   

2.
Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.  相似文献   

3.
Dyskeratosis congenita (DC) is a severe, inherited, bone marrow failure syndrome, with associated cutaneous and noncutaneous abnormalities. DC patients also show signs of premature ageing and have an increased occurrence of cancer. DC can originate through: (1) mutations in DKC1, which result in X-linked recessive DC; (2) mutations in the RNA component of telomerase (TERC), which result in autosomal dominant DC (AD-DC); and (3) mutations in other, currently uncharacterized, genes, which result in autosomal recessive DC (AR-DC). As DKC1 encodes dyskerin, a protein component of small nucleolar ribonucleoprotein (snoRNP) particles, which are important in ribosomal RNA processing, DC was initially described as a disorder of defective ribosomal biogenesis. Subsequently, dyskerin and TERC were shown to closely associate with each other in the telomerase complex, and DC has since come to be regarded as a telomerase deficiency disorder characterised by shorter telomeres. These findings demonstrate the importance of telomerase in humans and highlight how its deficiency (through DKC1 and TERC mutations) results in multiple abnormalities including premature ageing, bone marrow failure and cancer. Identification of the gene(s) involved in AR-DC will help to define the pathophysiology of DC further, as well as expand our insights into telomere function, ageing and cancer.  相似文献   

4.
Telomerase function is critical for telomere maintenance. Mutations in telomerase components lead to telomere shortening and progressive bone marrow failure in the premature aging syndrome dyskeratosis congenita. Short telomeres are also acquired with aging, yet the role that they play in mediating age-related disease is not fully known. We generated wild-type mice that have short telomeres. In these mice, we identified hematopoietic and immune defects that resembled those present in dyskeratosis congenita patients. When mice with short telomeres were interbred, telomere length was only incrementally restored, and even several generations later, wild-type mice with short telomeres still displayed degenerative defects. Our findings implicate telomere length as a unique heritable trait that, when short, is sufficient to mediate the degenerative defects of aging, even when telomerase is wild-type.  相似文献   

5.
Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.  相似文献   

6.
Telomeric structure in cells with chromosome end associations   总被引:13,自引:0,他引:13  
End-to-end associations of metaphase chromosomes have been observed in a variety of human tumors, ageing cells, and several chromosome instability syndromes. Since telomeres of tumor cells and ageing tissues are often reduced in length, it has been suggested that chromosome end associations may be due to loss of telomeric repeats. We report the molecular structure of telomeres of two human tumor cell lines with frequent end-to-end associations of metaphase chromosomes. These telomeres were shown to be severely reduced compared with most other human cells with functional telomeres. However, we also describe two cell lines with severely shortened telomeres that are not detectably compromised in their function. We suggest that telomeric length is not the only determinant of the fusigenic behavior of human telomeres in tumor cells.by T.C. Hsu  相似文献   

7.
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy‐controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb‐dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase‐deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy‐induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.  相似文献   

8.
Osteoporosis and the associated risk of fracture are major clinical challenges in the elderly. Telomeres shorten with age in most human tissues, including bone, and because telomere shortening is a cause of cellular replicative senescence or apoptosis in cultured cells, including mesenchymal stem cells (MSCs) and osteoblasts, it is hypothesized that telomere shortening contributes to the aging of bone. Osteoporosis is common in the Werner (Wrn) and dyskeratosis congenita premature aging syndromes, which are characterized by telomere dysfunction. One of the targets of the Wrn helicase is telomeric DNA, but the long telomeres and abundant telomerase in mice minimize the need for Wrn at telomeres, and thus Wrn knockout mice are relatively healthy. In a model of accelerated aging that combines the Wrn mutation with the shortened telomeres of telomerase (Terc) knockout mice, synthetic defects in proliferative tissues result. Here, we demonstrate that deficiencies in Wrn−/– Terc−/– mutant mice cause a low bone mass phenotype, and that age-related osteoporosis is the result of impaired osteoblast differentiation in the context of intact osteoclast differentiation. Further, MSCs from single and Wrn−/– Terc−/– double mutant mice have a reduced in vitro lifespan and display impaired osteogenic potential concomitant with characteristics of premature senescence. These data provide evidence that replicative aging of osteoblast precursors is an important mechanism of senile osteoporosis.  相似文献   

9.
Telomerase inhibition may be a novel anti-cancer strategy that can be used in combination with conventional therapies, such as DNA damaging agents. There are conflicting reports as to whether and to what extent telomerase and telomere length influence the sensitivity of cells to genotoxins. To understand the relationship between telomere length, telomerase expression, and sensitivity to genotoxic stress, we expressed the catalytic subunit of telomerase, hTERT, in human fibroblasts having different telomere lengths. We show that telomerase confers resistance to ionizing radiation, bleomycin, hydrogen peroxide, and etoposide only in cells with short, presumably near-dysfunctional, telomeres. This resistance depended on the ability of telomerase to elongate the short telomeres, and telomerase did not protect cells with long telomeres. Interestingly, although long telomeres had no effect on sensitivity to etoposide and bleomycin, they exacerbated sensitivity to hydrogen peroxide, supporting the idea that, compared to other types of DNA damage, telomeres are particularly vulnerable to oxidative damage. Our findings identify a mechanism and conditions under which telomerase and telomeres affect the response of human cells to genotoxic agents and may have important implications for anti-cancer interventions.  相似文献   

10.
11.
12.
The majority of tumor cells overcome proliferative limit by expressing telomerase. Whether or not telomerase preferentially extends the shortest telomeres is still under debate. When human cancer cells are cultured at neutral pH, telomerase extends telomeres in telomere length-independent manner. However, the microenvironment of tumor is slightly acidic, and it is not yet known how this influences telomerase action. Here, we examine telomere length homeostasis in tumor cells cultured at pHe 6.8. The results indicate that telomerase preferentially extends short telomeres, such that telomere length distribution narrows and telomeres become nearly uniform in size. After growth at pHe 6.8, the expression of telomerase, TRF1, TRF2 and TIN2 decreases, and the abundance of Cajal bodies decreases. Therefore, telomerase are insufficient for extending every telomere and shorter telomeres bearing less shelterin proteins are more accessible for telomerase recruitment. The findings support the ‘protein-counting mechanism’ in which extended and unextended state of telomere is determined by the number of associated shelterin proteins and the abundance of telomerase. Decreased expression of telomerase and preferential extension of short telomeres have important implications for tumor cell viability, and generate a strong rationale for research on telomerase-targeted anti-cancer therapeutics.  相似文献   

13.
14.
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.  相似文献   

15.
Reconstitution of telomerase activity is proposed as a potential gene therapy to prevent, or rescue, age-related diseases produced by critical telomere shortening. However, it is not known whether or not short telomeres are irreversibly damaged. We addressed this by re-introducing telomerase in late generation telomerase-deficient mice, Terc–/–, which have short telomeres and show severe proliferative defects. For this, we have crossed these mice with Terc+/– mice and analyzed telomere length, chromosomal instability and premature aging of the progeny. The Terc–/– progeny had one set of chromosomes with normal telomeres, whereas the other set remained with critically short telomeres; these mice presented chromosomal instability and premature aging. In contrast, Terc+/– progeny showed all chromosomes with detectable telomeres, and did not show chromosomal instability or premature aging. These results prove that critically short telomeres can be rescued by telomerase, and become fully functional, thus rescuing premature aging. This has important implications for the future design of telomerase-based gene therapy of age-related diseases.  相似文献   

16.
端粒,作为染色体末端的特殊结构,可以有效保护染色体,防止其降解、末端融合和重组。端粒酶是通过逆转录维持端粒长度的蛋白核酸复合体。二者共同构成了端粒-端粒酶系统。经过近30年的研究,人们发现该系统与人类健康密切相关。氧化应激可导致端粒结构与功能的改变。本文总结了影响端粒、端粒酶结构与功能的不同途径,并分析了氧化还原微环境和氧化应激对其的影响及对人类疾病的作用。  相似文献   

17.
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome associated with abnormalities of the skin, fingernails, and tongue. Other clinical manifestations may include epiphora, lung fibrosis, liver cirrhosis, osteoporosis, and a predisposition to develop a variety of malignancies. The clinical picture often resembles that of a premature aging syndrome and tissues affected are those with a high cell turnover. DC has been linked to mutations in at least four distinct genes, three of which have been identified. The product of these genes, dyskerin, the telomerase RNA (TERC), and the catalytic unit of telomerase (TERT) are part of a ribonucleoprotein complex, the telomerase enzyme, that is essential for the elongation and maintenance of chromosome ends or telomeres. All patients with DC have excessively short telomeres, indicating that the underlying defect in these individuals is an inability to maintain the telomeres. The purpose of the current review is to highlight recent insights into the molecular pathogenesis of DC. We discuss the impact these findings have on our current understanding of telomere function and maintenance, and on the diagnosis, management, and treatment of patients with conditions caused by dysfunctional telomeres.  相似文献   

18.
Telomerase regulation and stem cell behaviour   总被引:24,自引:0,他引:24  
Telomerase expression is restricted to a few cell types of the adult organism, most notably germ cells and stem/progenitor cells. Telomerase activity in germ cells is sufficient to prevent telomere shortening with age. Stem cells, however, do not have sufficient telomerase to prevent telomere shortening associated with continuous tissue renewal with increasing age. Indeed, telomerase levels in the adult organism are thought to be rate-limiting for longevity. This is supported by rare human syndromes caused by mutations in telomerase components, which are characterized by premature loss of tissue renewal and premature death. More recently, the role of telomerase and telomere length in stem cells is starting to be elucidated.  相似文献   

19.
20.
N F Lue  J Xia 《Nucleic acids research》1998,26(6):1495-1502
A gel mobility shift assay was developed to examine recognition of yeast telomeres by telomerase. An RNase-sensitive G-rich strand-specific binding activity can be detected in partially purified yeast telomerase fractions. The binding activity was attributed to telomerase, because it co-purifies with TLC1 RNA and telomerase activity over three different chromatographic steps and because the complex co-migrates with TLC1 RNA when subjected to electrophoresis through native gels. Analysis of the binding specificity of yeast telomerase indicates that it recognizes the G-rich strand of yeast telomeres with high affinity and specificity. The K d for the interaction is approximately 3 nM. Single-stranded G-rich telomeres from other species, such as human and Tetrahymena, though capable of being extended by yeast telomerase in polymerization assays at high concentrations, bind the enzyme with at least 100-fold lower affinities. The ability of a sequence to be bound tightly by yeast telomerase in vitro correlates with its ability to seed telomere formation in vivo. The implications of these findings for regulation of telomerase activity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号