首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tanaka T  Baba H  Hori Y  Kikuchi Y 《FEBS letters》2001,491(1-2):94-98
We developed a guide DNA technique with which the cleavage efficiency of pre-tRNA substrate raised in the RNase P reaction. The 20-mer guide DNAs hybridizing to the upstream region of the cleaving site enhanced the cleavage reactions of RNA substrates by Escherichia coli RNase P. This guide DNA technique was also applicable to cleavage site selection by choosing the DNA-hybridizing site. Results showed that RNase P accepts DNA/RNA double-stranded 5'-leader region with high catalytic efficiency as well as single-stranded RNA region in pre-tRNAs as substrates, which suggests that the protein component of bacterial RNase P prefers bulky nucleotides. The protein component did not affect the normal 5'-processing reaction of pre-tRNAs, but enhanced the mis-cleaving (hyperprocessing) reactions of tRNA in non-cloverleaf folding. Our results suggested that the protein component of RNase P is a modifier for substrate recognition.  相似文献   

2.
RNase MRP and RNase P share a common substrate.   总被引:4,自引:0,他引:4       下载免费PDF全文
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that processes RNA from the mammalian mitochondrial displacement loop containing region. RNase P is a site-specific ribonucleoprotein endoribonuclease that processes pre-tRNAs to generate their mature 5'-ends. A similar structure for the RNase P and RNase MRP RNAs and a common cleavage mechanism for RNase MRP and RNase P enzymes have been proposed. Experiments with protein synthesis antibiotics have shown that both RNase MRP and RNase P are inhibited by puromycin. We also show that E. coli RNase P cleaves the RNase MRP substrate, mouse mitochondrial primer RNA, exactly at a site that is cleaved by RNase MRP.  相似文献   

3.
Base pairing between Escherichia coli RNase P RNA and its substrate.   总被引:14,自引:2,他引:12       下载免费PDF全文
Base pairing between the substrate and the ribozyme has previously been shown to be essential for catalytic activity of most ribozymes, but not for RNase P RNA. By using compensatory mutations we have demonstrated the importance of Watson-Crick complementarity between two well-conserved residues in Escherichia coli RNase P RNA (M1 RNA), G292 and G293, and two residues in the substrate, +74C and +75C (the first and second C residues in CCA). We suggest that these nucleotides base pair (G292/+75C and G293/+74C) in the ribozyme-substrate complex and as a consequence the amino acid acceptor stem of the precursor is partly unfolded. Thus, a function of M1 RNA is to anchor the substrate through this base pairing, thereby exposing the cleavage site such that cleavage is accomplished at the correct position. Our data also suggest possible base pairing between U294 in M1 RNA and the discriminator base at position +73 of the precursor. Our findings are also discussed in terms of evolution.  相似文献   

4.
Ribonuclease P (RNase P) is involved in regulation of noncoding RNA (ncRNA) expression in Saccharomyces cerevisiae. A hidden-in-reading-frame antisense-1 (HRA1) RNA in S. cerevisiae, which belongs to a class of ncRNAs located in the antisense strand to verified protein coding regions, was cloned for further use in RNase P assays. Escherichia coli RNase P assays in vitro of HRA1 RNA show two cleavage sites, one major and one minor in terms of rates. The same result was observed with a partially purified S. cerevisiae RNase P activity, both at 30 degrees C and 37 degrees C. These latter cells are normally grown at 30 degrees C. Predictions of the secondary structure of HRA1 RNA in silico show the cleavage sites are canonical RNase P recognition sites. A relatively small amount of endogenous HRA1 RNA was identified by RT-PCR in yeast cells. The endogenous HRA1 RNA is increased in amount in strains that are deficient in RNase P activity. A deletion of 10 nucleotides in the HRA1 gene that does not overlap with the gene coding for a protein (DRS2) in the sense strand shows no defective growth in galactose or glucose. These data indicate that HRA1 RNA is a substrate for RNase P and does not appear as a direct consequence of separate regulatory effects of the enzyme on ncRNAs.  相似文献   

5.
The double-stranded RNA-specific endoribonuclease III (RNase III) of bacteria consists of an N-terminal nuclease domain and a double-stranded RNA binding domain (dsRBD) at the C-terminus. Analysis of two hybrid proteins consisting of the N-terminal half of Escherichia coli RNase III fused to the dsRBD of the Rhodobacter capsulatus enzyme and vice versa reveals that both domains in combination with the particular substrate determine substrate specificity and cleavage site selection. Extension of the spacer between the two domains of the E. coli enzyme from nine to 20 amino acids did not affect cleavage site selection.  相似文献   

6.
Tanaka T  Kanda N  Kikuchi Y 《FEBS letters》2004,577(1-2):101-104
We prepared some truncated and replaced P3 mutants of Escherichia coli RNase P RNA, and used them to examine the RNase P ribozyme and holoenzyme reactions of a pre-tRNA substrate. The results indicated that mutations in the P3 domain did not affect the cleavage site selection of the pre-tRNA substrate, but did affect the efficiency of cleavage of the substrate. Results of stepwise truncation of the P3 domain and its replacement by the TAR sequence showed that the P3 domain of the E. coli RNase P was able to be truncated to certain length and was replaceable, but could not be deleted in the ribozyme.  相似文献   

7.
A study was made of the cleavage by M1 RNA and RNase P of a non-tRNA precursor that can serve as a substrate for RNase P from Escherichia coli, namely, the precursor to 4.5 S RNA (p4.5S). The overall efficiency of cleavage of p4.5S by RNase P is similar to that of wild-type tRNA precursors. However, unlike the reaction with wild-type tRNA precursors, the reaction catalyzed by the holoenzyme with p4.5S as substrate has a much lower Km value than that catalyzed by M1 RNA with the same substrate, indicating that the protein subunit plays a crucial role in the recognition of p4.5S. A model hairpin substrate, based on the sequence of p4.5S, is cleaved with greater efficiency than the parent molecule. The 3'-terminal CCC sequence of p4.5 S may be as important for cleavage of this substrate as the 3'-terminal CCA sequence is for cleavage of tRNA precursors.  相似文献   

8.
Kim KS  Sim S  Ko JH  Cho B  Lee Y 《Journal of biochemistry》2004,136(5):693-699
To gain insight into the mechanism by which the sequence at the rne-dependent site of substrate RNA affects the substrate specificity of Escherichia coli RNase E, we performed kinetic analysis of the cleavage of precursor M1 RNA molecules containing various sequences at the rne-dependent site by the N-terminal catalytic half of RNase E (NTH-RNase E). NTH-RNase E displayed higher K(m) and k(cat) values for more specific substrates. The retention of single strandedness at the rne-dependent site was essential for cleavage efficiency. Moreover, the loss of single-strandedness was accompanied by a decrease in both the K(m) and k(cat) values.  相似文献   

9.
We analysed the processing of small bipartite model substrates by Escherichia coli and Bacillus subtilis RNase P and corresponding hybrid enzymes. We demonstrate specific trans-cleavage of a model substrate with a 4 bp stem and a 1 nucleotide (nt) 5' flank, representing to date the smallest mimic of a natural RNase P substrate that could be processed in trans at the canonical RNase P cleavage site. Processing efficiencies decreased up to 5000-fold when the 5' flank was shortened from 3 to 1 nt. Reduction of the 5' flank to 1 nt was more deleterious than reducing the stem from 7 to 4 bp, although the 4 bp duplex formed only transiently, in contrast to the stable 7 bp duplex. These results indicate that the crucial contribution of nt -2 in the single-stranded 5' flank to productive interaction is a general feature of A- and B-type bacterial RNase P enzymes. We also showed that an Rp-phosphorothioate modification at nt -2 interferes with processing. Bacterial RNase P holoenzymes are also capable of cleaving single-stranded RNA oligonucleotides as short as 5 nt, yielding RNase P-specific 5'-phosphate and 3'-OH termini, with measured turnover rates of up to 0.7 min-1. All cleavage sites were at least 2 nt away from the 5' and 3' ends of the oligonucleotides. Some cleavage site preferences were observed dependent on the identity of the RNase P RNA subunit.  相似文献   

10.
We have studied an interaction, the "73/294-interaction", between residues 294 in M1 RNA (the catalytic subunit of Escherichia coli RNase P) and +73 in the tRNA precursor substrate. The 73/294-interaction is part of the "RCCA-RNase P RNA interaction", which anchors the 3' R(+73)CCA-motif of the substrate to M1 RNA (interacting residues underlined). Considering that in a large fraction of tRNA precursors residue +73 is base-paired to nucleotide -1 immediately 5' of the cleavage site, formation of the 73/294-interaction results in exposure of the cleavage site. We show that the nature/orientation of the 73/294-interaction is important for cleavage site recognition and cleavage efficiency. Our data further suggest that this interaction is part of a metal ion-binding site and that specific chemical groups are likely to act as ligands in binding of Mg(2+) or other divalent cations important for function. We argue that this Mg(2+) is involved in metal ion cooperativity in M1 RNA-mediated cleavage. Moreover, we suggest that the 73/294-interaction operates in concert with displacement of residue -1 in the substrate to ensure efficient and correct cleavage. The possibility that the residue at -1 binds to a specific binding surface/pocket in M1 RNA is discussed. Our data finally rationalize why the preferred residue at position 294 in M1 RNA is U.  相似文献   

11.
The role of 2'-hydroxyl groups in a model substrate for RNase P from Escherichia coli was studied using mixed DNA/RNA derivatives of such a substrate. The presence of the 2'-hydroxyl groups of nucleotides at positions -1 and -2 in the leader sequence and at position 1, as well as at the first C in the 3'-terminal CCA sequence, are important but not absolutely essential for efficient cleavage of the substrate by RNase P or its catalytic RNA subunit, M1 RNA. The 2'-hydroxyl groups in the substrate that are important for efficient cleavage also participate in the binding of Mg2+. An all-DNA external guide sequence (EGS) can efficiently render a potential substrate, derived from the model substrate, susceptible to cleavage by the enzyme or its catalytic RNA subunit. Furthermore, both DNA and RNA EGSs turn over during the reaction with RNase P in vitro. The identity of the nucleotide at position 1 in the substrate, the adjacent Mg(2+)-binding site in the leader sequence, and the junction of the single and double-stranded regions are the important elements in the recognition of model substrates, as well as in the identification of the sites of cleavage in those model substrates.  相似文献   

12.
The 5'-terminal guanylate residue (G-1) of mature Escherichia coli tRNA(His) is generated as a result of an unusual cleavage by RNase P (Orellana, O., Cooley, L., and S?ll, D. (1986) Mol. Cell. Biol. 6, 525-529). We have examined the importance of the unique acceptor stem structure of E. coli tRNA(His) in determining the specificity of RNase P cleavage. Mutant tRNA(His) precursors bearing substitutions of the normal base G-1 or the opposing, potentially paired base, C73, can be cleaved at the +1 position, in contrast to wild-type precursors which are cut exclusively at the -1 position. These data indicate that the nature of the base at position -1 is of greater importance in determining the site of RNase P cleavage than potential base pairing between nucleotides -1 and 73. In addition, processing of the mutant precursors by M1-RNA or P RNA under conditions of ribozyme catalysis yields a higher proportion of +1-cleaved products in comparison to the reaction catalyzed by the RNase P holoenzyme. This lower sensitivity of the holoenzyme to alterations in acceptor stem structure suggests that the protein moiety of RNase P may play a role in determining the specificity of the reaction and implies that recognition of the substrate involves additional regions of the tRNA. We have also shown that the RNase P holoenzyme and tRNA(His) precursor of Saccharomyces cerevisiae, unlike their prokaryotic counterparts, do not possess these abilities to carry out this unusual reaction.  相似文献   

13.
14.
Rasmussen TA  Nolan JM 《Gene》2002,294(1-2):177-185
G350 of Escherichia coli RNase P RNA is a highly conserved residue among all bacteria and lies near the known magnesium binding site for the RNase P ribozyme, helix P4. Mutations at G350 have a dramatic effect on substrate cleavage activity for both RNA alone and holoenzyme; the G350C mutation has the most severe phenotype. The G350C mutation also inhibits growth of cells that express the mutant RNA in vivo under conditions of magnesium starvation. The results suggest that G350 contributes to Mg(2+) binding at helix P4 of RNase P RNA.  相似文献   

15.
The enzymatic cleavage of double-stranded (ds) RNA is an obligatory step in the maturation and decay of many cellular and viral RNAs. The primary agents of dsRNA processing are members of the ribonuclease III (RNase III) superfamily, which are highly conserved in eukaryotic and bacterial cells. Escherichia coli RNase III participates in the maturation of the ribosomal RNAs and in the maturation and decay of cellular and phage mRNAs. E. coli RNase III-dependent cleavage events can regulate gene expression by controlling mRNA stability and translational activity. RNase III recognizes its substrates and selects the scissile phosphodiester(s) by recognizing specific RNA sequence and structural elements, termed reactivity epitopes. Some E. coli RNase III substrates contain an internal loop, in which is located the single scissile phosphodiester. The specific features of the internal loop that establish the pattern of single-strand cleavage are not known. A mutational analysis of the asymmetric [4 nt/5 nt] internal loop of the phage T7 R1.1 substrate reveals that cleavage reactivity is largely independent of internal loop sequence. Instead, the [4/5] asymmetry per se is the primary determinant of cleavage of a single bond within the 5 nt strand of the internal loop. The T7 R1.1 internal loop lacks elements of local tertiary structure, as revealed by sensitivity to cleavage by terbium ion and by the ability of the internal loop to destabilize a small model duplex. The internal loop functions as a discrete structural element in that the pattern of cleavage can be controlled by the specific type of asymmetry. The implications of these findings are discussed in light of RNase III substrate function as a gene regulatory element.  相似文献   

16.
17.
18.
F Liu  S Altman 《Nucleic acids research》1996,24(14):2690-2696
M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, has been covalently linked at its 3' terminus to oligonucleotides (guide sequences) that guide the enzyme to target RNAs through hybridization with the target sequences. These constructs (M1GS RNAs) have been used to determine some minimal features of model substrates. As few as 3 bp on the 3' side of the site of cleavage in a substrate complex and 1 nt on the 5' side are required for cleavage to occur. The cytosines in the 3' terminal CCA sequence of the model substrates are important for cleavage efficiency but not cleavage site selection. A purine (base-paired or not) at the 3' side of the cleavage site is important both for cleavage site selection and efficiency. M1GS RNAs provide both a simple system for characterization of the reaction governed by M1 RNA and a tool for gene therapy.  相似文献   

19.
M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli, can under certain conditions catalytically cleave precursors to tRNA in the absence of C5, the protein moiety of RNase P. M1 RNA itself is not cleaved during the reaction, nor does it form any covalent bonds with its substrate. Only magnesium and, to a lesser extent, manganese ions can function at the catalytic center of M1 RNA. Several other ions either inhibit the binding of magnesium ion at the active site or function as structural counterions. The reaction rate of cleavage of precursors to tRNAs by M1 RNA is enhanced in the presence of poly-(ethylene glycol) or 2-methyl-2,4-pentanediol. Many aspects of the reaction catalyzed by M1 RNA are compatible with a mechanism in which phosphodiester bond cleavage is mediated by metal ion.  相似文献   

20.
Although helix P4 in the catalytic domain of the RNase P ribozyme is known to coordinate magnesium ions important for activity, distinguishing between direct and indirect roles in catalysis has been difficult. Here, we provide evidence for an indirect role in catalysis by showing that while the universally conserved bulge of helix P4 is positioned 5 nt downstream of the cleavage site, changes in its structure can still purturb active site metal binding. Because changes in helix P4 also appear to alter its position relative to the pre-tRNA cleavage site, these data suggest that P4 contributes to catalytic metal ion binding through substrate positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号