首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In many plant and animal species, sexual and asexual forms have different geographical distributions ('geographic parthenogenesis'). The common dandelion Taraxacum officinale s.l. provides a particularly clear example of differing distributions: diploid sexuals are restricted to southern and central Europe, while triploid asexuals occur across Europe. To get a better understanding of the factors underlying this pattern, we studied the distribution and demography of sexuals and asexuals in a mixed population that was located at the northern distribution limit of the sexuals. In this population three adjacent, contrasting microhabitats were found: a foreland and south and north slopes of a river dike. Comparative analyses of the distribution, phenology and demography indicated that sexuals had a stronger preference for the south slope than did asexuals. We therefore propose that the large-scale geographic parthenogenesis in T. officinale is shaped by an environmental gradient which acts upon the sexuals.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 205–218.  相似文献   

2.
Interspecific hybridization may result in asexual hybrid lineages that reproduce via parthenogenesis. Contrary to true parthenogens, sperm-dependent asexuals (gynogens and hybridogens) are restricted to the range of bisexual species, generally the parental taxa, by their need for a sperm donor. It has been documented that asexual lineages may rarely use sperm from a non-parental species or even switch a host. The available literature reports do not allow distinguishing, between whether such host switches arise by the expansion of asexuals out of their parental's range (and into that of another's) or by the local extinction of a parental population followed by a host switch. The present study combines new and previously collected data on the distribution and history of gynogenetic spined loaches (Cobitis) of hybrid origin. We identified at least three clonal lineages that have independently switched their sperm dependency to different non-parental Cobitis species, and in cases incorporated their genomes. Our current knowledge of European Cobitis species and their hybrids suggests that this pattern most probably results from the expansion of gynogenetic lineages into new areas. Such expansion was independent of the original parental species. This suggests that sperm dependence is not as restrictive to geographical expansion when compared with true parthenogenesis as previously thought.  相似文献   

3.
Lundmark M  Saura A 《Hereditas》2006,143(2006):23-32
Asexual forms of invertebrates are relatively common. They are often more successful than their sexual progenitors. Especially in insects, the pattern called geographical parthenogenesis shows that asexuality is important in speciation and ecological adaptation. In geographical parthenogenesis the clones have a wider distribution than the sexual forms they originate from. This indicates that they have a broader niche they may utilize successfully. The cause of this apparent success is, however, hard to come by as the term asexuality covers separate phenomena that are hard to disentangle from the mode of reproduction itself. Asexual insects are often polyploid, of hybrid origin, or both and these phenomena have been argued to explain the distribution patterns better than clonality. In this study we survey the literature on arthropods with geographical parthenogenesis in an attempt to clarify what evidence there is for the different phenomena explaining the success of the clonal forms. We focus on the few species where knowledge of distribution of different ploidy levels allows for a distinction of contributions from different phenomena to be made. Our survey support that asexuality is not the only factor underlying the success of all asexuals. Evidence about the importance of a hybrid origin of the clones is found to be meagre as the origin of clones is unknown in the majority of cases. Asexuality, hybridity and polyploidy are intertwined phenomena that each and all may contribute to the success of clonal taxa. Polyploidy, however, emerges as the most parsimonious factor explaining the success of these asexual invertebrate taxa.  相似文献   

4.
Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this prediction, we estimated the accumulation rate of coding (nonsynonymous) mutations, which are expected to be deleterious, in parts of one mitochondrial (COI) and two nuclear (Actin and Hsp70) genes in six independently derived asexual lineages and related sexual species of Timema stick insects. We found signatures of increased coding mutation accumulation in all six asexual Timema and for each of the three analyzed genes, with 3.6- to 13.4-fold higher rates in the asexuals as compared with the sexuals. In addition, because coding mutations in the asexuals often resulted in considerable hydrophobicity changes at the concerned amino acid positions, coding mutations in the asexuals are likely associated with more strongly deleterious effects than in the sexuals. Our results demonstrate that deleterious mutation accumulation can differentially affect sexual and asexual lineages and support the idea that deleterious mutation accumulation plays an important role in limiting the long-term persistence of all-female lineages.  相似文献   

5.
The distributional pattern of geographical parthenogenesis has not yet been clearly explained. In Daphnia pulex, asexuals are found at higher latitude and in more marginal habitats than their sexual relatives. In addition, some asexual lineages, especially northern ones, are polyploid. This study aimed to test if polyploid clones are more resistant than sympatric diploid clones to a wide range of environmental factors and if asexual Daphnia (diploid clones) are more tolerant of extreme environmental conditions than sexual ones. We report significant differences in survivorship after short-term exposure to acute pH, conductivities, and temperature in 12 lineages of the Daphnia pulex complex. Ploidy level, reproductive mode, geographic origin, and heterozygosity level had a significant effect on survival but their effect varied depending on environmental factors.  相似文献   

6.
Transitions from sexual reproduction to parthenogenesis may occur along multiple evolutionary pathways and involve various cytological mechanisms to produce diploid eggs. Here, we investigate routes to parthenogenesis in Timema stick insects, a genus comprising five obligate parthenogens. By combining information from microsatellites and karyotypes with a previously published mitochondrial phylogeny, we show that all five parthenogens likely evolved spontaneously from sexually reproducing species, and that the sexual ancestor of one of the five parthenogens was probably of hybrid origin. The complete maintenance of heterozygosity between generations in the five parthenogens strongly suggests that eggs are produced by apomixis. Virgin females of the sexual species were also able to produce parthenogenetic offspring, but these females produced eggs by automixis. High heterozygosity levels stemming from conserved ancestral alleles in the parthenogens suggest, however, that automixis has not generated the current parthenogenetic Timema lineages but that apomixis appeared abruptly in several sexual species. A direct transition from sexual reproduction to (at least functional) apomixis results in a relatively high level of allelic diversity and high efficiency for parthenogenesis. Because both of these traits should positively affect the demographic success of asexual lineages, spontaneous apomixis may have contributed to the origin and maintenance of asexuality in Timema .  相似文献   

7.
It has been known for long time that asexual organisms may affect the distribution of sexual taxa. In fact, such phenomenon is inherent in the concept of geographical parthenogenesis. On the other hand, it was generally hypothesized that sperm-dependent asexuals may not exercise the same effect on related sexual population, due to their dependence upon them as sperm-donors. Recently, however, it became clear that sperm-dependent asexuals may directly or indirectly affect the distribution of their sperm-hosts, but rather in a small scale. No study addressed the large-scale biogeographic effect of the coexistence of such asexuals with the sexual species. In our study we were interested in the effect of sexual–asexual coexistence on the speed of spatial expansion of the whole complex. We expand previously published Lotka–Volterra model of the coexistence of sexual and gynogenetic forms of spined loach (Cobitis; Teleostei) hybrid complex by diffusion. We show that presence of sperm-dependent parthenogens is likely to negatively affect the spatial expansion of sexuals, and hence the whole complex, compared to pure sexual population. Given that most of the known sperm-dependent asexual complexes are distributed in areas prone to climate-induced colonization/extinction events, we conclude that such mechanism may be an important agent in determining the biogeography of sexual taxa and therefore requires further attention including empirical tests.  相似文献   

8.
Asexuality is rare in animals in spite of its apparent advantage relative to sexual reproduction, indicating that it must be associated with profound costs [1-9]. One expectation is that reproductive advantages gained by new asexual lineages will be quickly eroded over time [3, 5-7]. Ancient asexual taxa that have evolved and adapted without sex would be "scandalous" exceptions to this rule, but it is often difficult to exclude the possibility that putative asexuals deploy some form of "cryptic" sex, or have abandoned sex more recently than estimated from divergence times to sexual relatives [10]. Here we provide evidence, from high intraspecific divergence of mitochondrial sequence and nuclear allele divergence patterns, that several independently derived Timema stick-insect lineages have persisted without recombination for more than a million generations. Nuclear alleles in the asexual lineages displayed significantly higher intraindividual divergences than in related sexual species. In addition, within two asexuals, nuclear allele phylogenies suggested the presence of two clades, with sequences from the same individual appearing in both clades. These data strongly support ancient asexuality in Timema and validate the genus as an exceptional opportunity to attack the question of how asexual reproduction can be maintained over long periods of evolutionary time.  相似文献   

9.
Classical cost‐of‐sex models predict the rapid fixation of asexual reproduction. Coexistence of sexuals and asexuals is common among hermaphrodite plants, however, providing asexuals with access to sex via their male function; some of the sexually reproduced progeny they sire will be asexual. The ability of asexuals to sire progeny is often hindered by the production of poor quality pollen. Using cellular automata, it is shown that decreases in pollen quality in asexuals can greatly increase the period of coexistence of sexuals and asexuals and, consequently, the cumulative contribution of sex to asex. Extensive periods of coexistence are only likely, however, if pollen and seed are dispersed locally, in which case coexistence over thousands of generations can be achieved. It is argued that, with local dispersal, the negative relationship between pollen quality and the period of coexistence of sex and asex will result in patterns of geographic parthenogenesis in which asexuals that coexist with sexuals will exhibit a poor male function, whereas asexuals with a very efficient male function will occur in exclusively asexual populations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 954–966.  相似文献   

10.
The short-term advantages of sexual reproduction are unclear, but the existence of groups that are capable of producing either meiotic or ameiotic eggs (cyclic parthenogenesis, CP) might indicate that short-term advantages to sex exist. Alternatively, CP might be an unstable transitory stage between asexuality and sex, or a phylogenetically favoured life cycle (i.e. clade selection). The extensive knowledge of breeding systems and population genetics in branchiopod crustaceans makes them a useful group to test phylogenetic predictions of these hypotheses. Several proponents favour the hypothesis that CP has evolved multiple times in five orders of branchiopod crustaceans. We inferred the first robust branchiopod phylogeny from nuclear rRNA sequence (SSU and LSU), morphology, and complex rRNA stem–loop structures to assess the phylogenetic distribution of cyclic parthenogenesis. The sequence-based, structural rRNA and total evidence phylogenies are concordant and suggest that cyclic parthenogenesis arose once in the branchiopods, that this clade is long-lived (at least since the Permian), and that it has radiated extensively into nearly every aqueous habitat without reverting to strict sexuality and only rarely transforming to strict asexuality. These results are consistent with the clade selection hypothesis but inconsistent with the predictions of the hypothesis that CP is a transitory stage that leads to strict sexual reproduction. The evidence also indicates that clade selection for CP is a viable alternative explanation for the maintenance of sex in CP life cycles.  相似文献   

11.
Recent and ancient asexuality in Timema walkingsticks   总被引:1,自引:0,他引:1  
Determining the evolutionary age of asexual lineages should help in inferring the temporal scale under which asexuality and sex evolve and assessing selective factors involved in the evolution of asexuality. We used 416 bp of the mitochondrial COI gene to infer phylogenetic relationships of virtually all known Timema walkingstick species, including extensive intraspecific sampling for all five of the asexuals and their close sexual relatives. The asexuals T. douglasi and T. shepardii were very closely related to each other and evolutionarily young (less than 0.5 million years old). For the asexuals T. monikensis and T. tahoe, evidence for antiquity was weak since only one population of each was sampled, intraspecific divergences were low, and genetic distances to related sexuals were high: maximum-likelihood molecular-clock age estimates ranged from 0.26 to 2.39 million years in T. monikensis and from 0.29-1.06 million years in T. tahoe. By contrast, T. genevieve was inferred to be an ancient asexual, with an age of 0.81 to 1.42 million years. The main correlate of the age of asexual lineages was their geographic position, with younger asexuals being found further north.  相似文献   

12.
Parthenogenetic organisms are all female and reproduce clonally. The transition from sex to parthenogenesis is frequently associated with a major change in geographical distribution, often biasing parthenogenetic lineages towards environments that were severely affected by the glacial cycles of the Late Pleistocene. It is difficult to interpret these patterns as arising simply as a result of selection for the demographic effects of parthenogenesis because many parthenogenetic organisms are also hybrids. Here, I argue that many cases of geographical parthenogenesis might be best seen as part of a broader pattern of hybrid advantage in new and open environments. Parthenogenesis in these cases could have a more secondary role of stabilizing strongly selected hybrid genotypes. In this context, geographical parthenogenesis might tell us more about the role of hybridization in evolution than about the role of sex.  相似文献   

13.
Two models are presented to test the hypothesis that in aphids, a particular constraint (the necessity to resist frost) could be the proximal cause for the maintenance of sex. Both models are based on temporal variability in winter survival of asexuals. They show that:
  • i) only cyclical parthenogenesis is maintained below a threshold frequency of mild winters, because of the cold-resistance of sexually-produced eggs.
  • ii) above a second threshold, only obligate parthenogenesis is maintained.
  • iii) in-between, the first model predicts a mixed evolutionarily stable strategy (ESS). This would reflect well the geographic distribution of the different types of reproduction. The second model, based on the genetic control of the reproduction system in two aphid species, predicts the maintenance of polymorphism with fluctuating proportions of the two life-cycles. Males produced by obligate parthenogens play an essential role in this equilibrium (no stable polymorphism exists if this male production is set to zero). The value of the lowest possible fitness achieved by overwintering asexuals is critical.
  相似文献   

14.
Nested clade analyses (NCA) and likelihood mapping were applied to DNA sequence data of the ribosomal ITS1 and mitochondrial COI region from two non-marine ostracod species. The aim was to test whether Pleistocene glaciations may have shaped genetic and geographic patterns. According to the results from both types of analyses, evidence was lacking for any kind of geographic grouping of European (and one African) population from the putatively ancient asexual ostracod, Darwinula stevensoni. This counters the possibility that a recent selective sweep could have caused the low intraspecific, genetic diversity observed in this species. One of the most cited hypotheses to explain geographic parthenogenesis invokes faster, postglacial colonization by asexual lineages. However, no evidence for northern ‘range expansion’ of asexual haplotypes was found for Eucypris virens, a species with geographic parthenogenesis. Rather, the outcome of the NCA reveals that phylogeographic relationships are characterized by ‘restricted dispersal with isolation by (geographic) distance’. This result suggests that either no faster, postglacial range expansion of asexuals occurred in E. virens or, that patterns of subsequent colonization became ‘overwritten’ by more recent dispersal events. Likelihood mapping provides evidence for the second scenario because genetic instead of geographic clustering was statistically supported. Handling editor: K. Martens  相似文献   

15.

Background

Multiple transitions to obligate parthenogenesis have occurred in the Daphnia pulex complex in North America. These newly formed asexual lineages are differentially distributed being found predominantly at high latitudes. This conforms to the rule of geographical parthenogenesis postulating prevalence of asexuals at high latitudes and altitudes. While the reproductive mode of high-latitude populations is relatively well studied, little is known about the reproduction mode in high altitudes. This study aimed to assess the reproductive mode of Daphnia pulicaria, a species of the D. pulex complex, from high altitude lakes in Europe.

Methodology/Principal Findings

Variation at eight microsatellite loci revealed that D. pulicaria from the High Tatra Mountains (HTM) had low genotype richness and showed excess of heterozygotes and significant deviations from Hardy-Weinberg expectations, and was thus congruent with reproduction by obligate parthenogenesis. By contrast, populations from the Pyrenees (Pyr) were generally in Hardy-Weinberg equilibrium and had higher genotypic richness, suggesting that they are cyclic parthenogens. Four lakes from lowland areas (LLaP) had populations with an uncertain or mixed breeding mode. All D. pulicaria had mtDNA ND5 haplotypes of the European D. pulicaria lineage. Pyr were distinct from LLaP and HTM at the ND5 gene. By contrast, HTM shared two haplotypes with LLaP and one with Pyr. Principal Coordinate Analysis of the microsatellite data revealed clear genetic differentiation into three groups. HTM isolates were intermediate to Pyr and LLaP, congruent with a hybrid origin.

Conclusion/Significance

Inferred transitions to obligate parthenogenesis have occurred only in HTM, most likely as a result of hybridizations. In contrast to North American populations, these transitions do not appear to involve meiosis suppressor genes and have not been accompanied by polyploidy. The absence of obligate parthenogenesis in Pyr, an environment highly similar to the HTM, may be due to the lack of opportunities for hybridization.  相似文献   

16.
Parthenogenesis in bushcrickets has an incidence of less than 1%. In the diploid bushcricket Poecilimon intermedius, rearing indicates obligate, thelytokous parthenogenesis. Antibiotic treatment of P. intermedius was not effective in restoring male production, and negative results from PCR screening excluded feminizing endosymbionts, such as Wolbachia, as a reason for the lack of males. The geographical range of P. intermedius follows the general pattern of geographical parthenogenesis, being more northerly and much larger than in the sexual relatives. This is a rare example of geographical parthenogenesis that is not attributable to endosymbiont infection or polyploidy. Females of the parthenogenetic species show differential decay of mating‐related behaviour. While interspecific matings were readily achieved in captivity, with spermatophores being transferred and sperm successfully entering the females, the parthenogenetic females exhibit no phonotaxis towards singing males.  相似文献   

17.
Parthenogenetic lineages within non-marine ostracods can occur either in mixed (with sexual and asexual females) or exclusively asexual taxa. The former mode of reproduction is associated with a high intraspecific diversity at all levels (genetic, morphological, ecological) and, at least in the Cypridoidea, with geographical parthenogenesis. Obligate asexuality is restricted to the Darwinuloidea, the strongest candidate for an ancient asexual animal group after the bdelloid rotifers, and is characterized by low diversity. We have compared rates of molecular evolution for the nuclear ITS1 region and the mitochondrial COI gene amongst the three major lineages of non-marine ostracods with sexual, mixed and asexual reproduction. Absolute rates of molecular evolution are low for both regions in the darwinulids. The slow-down of evolution in ITS1 that has been observed for Darwinula stevensoni (Brady & Robertson) apparently does not occur in other darwinulid species. ITS1 evolves more slowly than COI within non-marine ostracod families, including the darwinulids, but not between superfamilies. The ancient asexuals might have a higher relative substitution rate in ITS1, as would be expected from hypotheses that predict the accumulation of mutations in asexuals. However, the speed-up of ITS could also be ancient, for example through the stochastic loss of most lineages within the superfamily after the Permian–Triassic mass extinction. In this case, the difference in rate would have occurred independently from any effects of asexual reproduction.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 93–100.  相似文献   

18.
It is generally considered that sexual organisms show faster evolutionary adaptation than asexual organisms because sexuals can accumulate adaptive mutations through recombination. Yet, empirical evidence often shows that the geographic range size of sexual species is narrower than that of closely related asexual species, which may seem as if asexuals can adapt to more varied environments. Two potential explanations for this apparent contradiction considered by the existing theory are reproduction assurance and migration load. Here, we consider both reproductive assurance and migration load within a single model to comparatively examine their effects on range expansions of sexuals and asexuals across an environmental gradient. The model shows that higher dispersal propensity decreases sexuals' disadvantage in reproductive assurance while increasing their disadvantage in migration load. Moreover, lower mutation rate constrains adaptation more strongly in asexuals than in sexuals. Thus, high dispersal propensity and high mutation rates promote that asexuals have wider range sizes than sexuals. Intriguingly, our model reveals that sexuals can have wider geographic range sizes than asexuals under low dispersal propensity and low mutation rates, a pattern consistent with a few exceptional empirical cases. Combining reproductive assurance and migration load provides a useful perspective to better understand the relationships between species' mating systems and their geographic ranges.  相似文献   

19.
  • Although reproductive assurance has been suggested to be one of the most important factors shaping the differential distributional patterns between sexuals and asexuals (geographic parthenogenesis), it has only rarely been studied in natural populations of vascular plants with autonomous apomixis. Moreover, there are almost no data concerning the putative relationship between the level of apomictic versus sexual plant reproduction on one hand, and reproductive assurance on the other.
  • We assessed the level of sexual versus apomictic reproduction in diploid and triploid plants of Hieracium alpinum across its distributional range using flow cytometric analyses of seeds, and compared the level of potential and realized seed set, i.e. reproductive assurance, between the two cytotypes under field and greenhouse conditions.
  • Flow cytometric screening of embryos and endosperms of more than 4,100 seeds showed that diploids produced solely diploid progeny sexually, while triploids produced triploid progeny by obligate apomixis. Potential fruit set was much the same in diploids and triploids from the field and the greenhouse experiment. While in the pollination‐limited environment in the greenhouse apomictic triploids had considerably higher realized fruit set than sexual diploids, there was no significant difference between cytotypes under natural conditions. In addition, sexuals varied to a significantly larger extent in realized fruit set than asexuals under both natural and greenhouse conditions.
  • Our results indicate that triploid plants reproduce by obligate apomixis, assuring more stable and predictable fruit reproduction when compared to sexual diploids. This advantage could provide apomictic triploids with a superior colonisation ability, mirrored in a strong geographic parthenogenesis pattern observed in this species.
  相似文献   

20.
The phenomenon of geographic parthenogenesis is closely tied to the question of why sexual reproduction is the dominant mode of reproduction in animals and plants. Geographic parthenogenesis describes the fact that many species reproduce asexually at the boundaries of their range. We present a mathematical model that derives the dominance of sexuals at the center and the dominance of asexuals at the boundary of a species' range from exactly the same mechanism. Our model is based on a set of resources that regrow slowly and that can be consumed only by those individuals that have a suitable genotype. Genotype is implemented by a multilocus model with two alleles at each locus, and with free recombination during production of sexual offspring. The model is tailored to seasonal species with intermittent mixis and low survival of offspring, such as Daphnia and aphids. Several patches of resources are arranged in a row, with a gradient of those parameters that typically vary through the range of species. By letting sexually and asexually reproducing populations compete, we obtain the typical patterns of geographic parthenogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号