首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied how the dynamic components of laser light scattered from human spermatozoa depend on the scattering angle. This was done by investigating the halfwidth of the intensity autocorrelation function. A model of the spermatozoa as freely rotating and translating linear objects was adequate to describe the scattered light. Rotational motions determined the halfwidth of the intensity autocorrelation function at very small scattering angles and contribution from translational motions was dominant at scattering angles larger than 20 degrees. The contribution from translational motions increased with increasing scattering angle. We found a nearly linear relationship between the translation speed and the rotation frequency. However, the ratio between the two properties varied more than expected from the methodological error. Therefore we introduced a propelling efficacy as a concept to describe the swimming efficiency. This property might contain important information about the swim characteristics.Abbreviations ACF Autocorrelation function - 1/2 halfwidth - RGD Rayleigh-Gans-Debye - SD Standard deviation Correspondence to: P. Thyberg  相似文献   

2.
Ten thermophilic Gram-positive bacteria were isolated from various soils of Saudi Arabia. The strains are spore-forming rods belonging to the speciesBacillus stearothermophilus. The cells are motile, strictly aerobic, catalase and oxidase positive. The sporangia appear to be swollen and their position varies from terminal in some to sub-terminal in others. The thermal stability of some enzymes of these bacteria was investigated; extracellular α-amylase appears to be very sensitive to pH and temperature. The ultrastructure of these bacteria shows specific changes in the cell wall when grown at the maximum, minimum and optimum growth temperatures, respectively.  相似文献   

3.
The colonization of glass surfaces by motile and nonmotile strains of Pseudomonas fluorescens was evaluated by using dual-dilution continuous culture (DDCC), competitive and noncompetitive attachment assays, and continuous-flow slide culture. Both strains possessed identical growth rates whether in the attached or planktonic state. Results of attachment assays using radiolabeled bacteria indicated that both strains obeyed first-order (monolayer) adsorption kinetics in pure culture. However, the motile strain attached about four times more rapidly and achieved higher final cell densities on surfaces than did the nonmotile strain (2.03 × 108 versus 5.57 × 107 cells vial-1) whether evaluated alone or in cocultures containing motile and nonmotile P. fluorescens. These kinetics were attributed to the increased transport of motile cells from the bulk aqueous phase to the hydrodynamic boundary layer where bacterial attachment, growth, and recolonization could occur. First-order attachment kinetics were also observed for both strains by using continuous-flow slide culture assays analyzed by image analysis. The DDCC system contained both aqueous and particulate phases which could be diluted independently. DDCC results indicated that when cocultures containing motile and nonmotile P. fluorescens colonized solid particles, the motile strain replaced the nonmotile strain in the system over time. Increasing the aqueous-phase rates of dilution decreased the time required for extinction of the nonmotile strain while concurrently decreasing the overall carrying capacity of the DDCC system for both strains. These results confirmed that bacterial motility conveyed a selective advantage during surface colonization even in aqueous-phase systems not dominated by laminar flow.  相似文献   

4.
Temperature effects on bacterial movement.   总被引:1,自引:0,他引:1       下载免费PDF全文
Details are presented for the construction of a simple precision temperature-controlled chamber for investigating bacterial motile behavior. Independent of original incubation temperature, all species of motile bacteria observed showed a five- to sevenfold increase in average translational velocity (micrometers per second) as the environment temperature was incremented over the range from 10 to 50 degrees C. Temperature jumps downward produced transient tumbling or reciprocal behavior responses, depending on the mode of flagellar distribution, in all species examined. Upward temperature jumps induced accelerated velocities without tumbling or reversal. A partial capacity adaptation to temperature was noted, in that the greatest average translational velocity at any given observation temperature occurred when the organisms were grown at temperatures less than the optimum.  相似文献   

5.
Details are presented for the construction of a simple precision temperature-controlled chamber for investigating bacterial motile behavior. Independent of original incubation temperature, all species of motile bacteria observed showed a five- to sevenfold increase in average translational velocity (micrometers per second) as the environment temperature was incremented over the range from 10 to 50 degrees C. Temperature jumps downward produced transient tumbling or reciprocal behavior responses, depending on the mode of flagellar distribution, in all species examined. Upward temperature jumps induced accelerated velocities without tumbling or reversal. A partial capacity adaptation to temperature was noted, in that the greatest average translational velocity at any given observation temperature occurred when the organisms were grown at temperatures less than the optimum.  相似文献   

6.
The ability to move on solid surfaces provides ecological advantages for bacteria, yet many bacterial species lack this trait. We found that Xanthomonas spp. overcome this limitation by making use of proficient motile bacteria in their vicinity. Using X. perforans and Paenibacillus vortex as models, we show that X. perforans induces surface motility, attracts proficient motile bacteria and ‘rides'' them for dispersal. In addition, X. perforans was able to restore surface motility of strains that lost this mode of motility under multiple growth cycles in the lab. The described interaction occurred both on agar plates and tomato leaves and was observed between several xanthomonads and motile bacterial species. Thus, suggesting that this motility induction and hitchhiking strategy might be widespread and ecologically important. This study provides an example as to how bacteria can rely on the abilities of their neighboring species for their own benefit, signifying the importance of a communal organization for fitness.  相似文献   

7.
A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature.  相似文献   

8.
The solution-scattering profiles of macromolecules are significantly affected by the thermal motions of their atoms, especially at wide scattering angles, even when only a single conformational state is significantly populated in solution. Here it is shown that the impact thermal motions have on the molecular component of the solution-scattering profile of a single-state macromolecule can be predicted accurately if the variances and covariances of the thermal excursions of its atoms from their average positions are known.  相似文献   

9.
The solution-scattering profiles of macromolecules are significantly affected by the thermal motions of their atoms, especially at wide scattering angles, even when only a single conformational state is significantly populated in solution. Here it is shown that the impact thermal motions have on the molecular component of the solution-scattering profile of a single-state macromolecule can be predicted accurately if the variances and covariances of the thermal excursions of its atoms from their average positions are known.  相似文献   

10.
Laser light scattering has been employed to determine the swimming speed distribution and the fraction of motile cells in samples of bovine spermatozoa. As predicted from theory, average trajectory velocities determined by laser light scattering were approximately four times the average translational speed estimated using light microscopy. The proportion of motile spermatozoa decreased with time at the same rate when samples were prepared in either HEPES or phosphate buffers. However, whereas the mean swimming velocity declined slowly in HEPES buffer, it dropped rapidly when phosphate buffer was used. Dilution (in the range 40–0.4×106 spermatozoa·ml-1) in either of these two buffers reduced the fraction of motile spermatozoa in the sample, but the mean swimming velocity of the remaining active spermatozoa was unchanged. Lowering the temperature from 37° C to 15° C reduced the mean swimming speed by a factor of 2–3 and the fraction of motile cells by a factor of 4–5.  相似文献   

11.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

12.
Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects.  相似文献   

13.
Dynamic and static light scattering, CD, and optical melting experiments have been conducted on M13mp19 viral circular single-strand DNA as a function of NaCl concentration. Over the 10,000-fold range in concentration from 100 microM to 1.0 M NaCl, the melting curves and CD spectra indicate an increase in base stacking and stability of stacked regions with increased salt concentration. Analysis of dynamic light scattering measurements of the single-strand DNA solutions as a function of K2 from 1.56 to 20 X 10(10) cm-2 indicates the collected autocorrelation functions are biexponential, thus revealing the presence of two decaying dynamic components. These components are taken to correspond to (1) global translational motions of the molecular center of mass and (2) motions of the internal molecular subunits. From the evaluated relaxation rates of these components, diffusion coefficients D0 and Dplat are determined. The center of mass translational diffusion coefficient D0, varies in a nonmonotonic manner, by 10%, from 3.75 X 10(-8) to 3.39 X 10(-8) cm2/s over the NaCl concentration range from 100 microM to 1.0 M. Likewise, the radius of gyration RG, obtained from static light scattering experiments, varies by 15% from 699 to 830 A over the same NaCl range Dplat, the diffusion coefficient of the internal subunits, displays a different dependence on the NaCl concentration and decreases, by nearly 22% in a titratable fashion, from 12.46 X 10(-8) to 10.26 X 10(-8) cm2/s, when the salt is increased from 100 microM to 1.0 M. A semiquantitative interpretation of these results is provided by analysis of the light scattering data in terms of the circular Rouse-Zimm chain. Rouse-Zimm model parameters are estimated from the experimental results, assuming the circular chains are composed of a fixed number of Gaussian segments, N + 1 = 15. The rms displacement of the internal segments, b, is estimated to be the smallest (442 A) in 100 mM NaCl. Increases of b to 467 A in 100 microM and 524 A in 1.0 M NaCl are observed. Meanwhile, the hypothetical friction factor of the internal subunits, f, progressively increases as the NaCl concentration is raised. It is inferred from the evaluated Rouse-Zimm model parameters that both the static flexibility of the circular chain and diffusive displacements of the internal subunits decrease with increases in NaCl concentration from 100 mM to 1.0 M.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Chemotaxis allows bacteria to more efficiently colonize optimal microhabitats within their larger environment. Chemotaxis in Escherichia coli is the best-studied model system, and a large number of E. coli strains have been sequenced. The Escherichia/Shigella genus encompasses a great variety of commensal and pathogenic strains, but the role of chemotaxis in their association with the host remains poorly understood. Here we show that the core chemotaxis genes are lost in many, but not all, nonmotile strains but are well preserved in all motile strains. The genes encoding the Tar, Tsr, and Aer chemoreceptors, which mediate chemotaxis to a broad spectrum of chemical and physical cues, are also nearly uniformly conserved in motile strains. In contrast, the clade of extraintestinal pathogenic E. coli strains apparently underwent an ancestral loss of Trg and Tap chemoreceptors, which sense sugars, dipeptides, and pyrimidines. The broad range of time estimated for the loss of these genes (1 to 3 million years ago) corresponds to the appearance of the genus Homo.  相似文献   

15.
The role of flagellar motility in determining the epiphytic fitness of an ice-nucleation-active strain of Pseudomonas syringae was examined. The loss of flagellar motility reduced the epiphytic fitness of a normally motile P. syringae strain as measured by its growth, survival, and competitive ability on bean leaf surfaces. Equal population sizes of motile parental or nonmotile mutant P. syringae strains were maintained on bean plants for at least 5 days following the inoculation of fully expanded primary leaves. However, when bean seedlings were inoculated before the primary leaves had expanded and bacterial populations on these leaves were quantified at full expansion, the population size of the nonmotile derivative strain reached only 0.9% that of either the motile parental or revertant strain. When fully expanded bean primary leaves were coinoculated with equal numbers of motile and nonmotile cells, the population size of a nonmotile derivative strain was one-third of that of the motile parental or revertant strain after 8 days. Motile and nonmotile cells were exposed in vitro and on plants to UV radiation and desiccating conditions. The motile and nonmotile strains exhibited equal resistance to both stresses in vitro. However, the population size of a nonmotile strain on leaves was less than 20% that of a motile revertant strain when sampled immediately after UV irradiation. Epiphytic populations of both motile and nonmotile P. syringae declined under desiccating conditions on plants, and after 8 days, the population size of a nonmotile strain was less than one-third that of the motile parental or revertant strain.  相似文献   

16.
This paper addresses the trajectory planning problem for a task which requires positioning and orienting an object firmly grasped by two hands at a visually specified goal configuration in the horizontal plane. The motor task involves three degrees of freedom (two translational and one rotational), and the motions of the arms are constrained by the physical coupling through the held object. Experimentally measured trajectories of two arms in the coordinated positioning/orienting task are presented. The hypothesis that the rotational and translational components of motions are decoupled and independently planned is tested. Two explicit mathematical models to account for the kinematic features of the two-arm motions are formulated, and the predictions of the models are compared with the experimental data. Both models extend the minimum-jerk model to the two-arm coordinated motions case. The trajectories predicted by the models were found to be in qualitative agreement with the experimental data. However, neither model could account for the observed configuration dependence of the motions, nor for some of the properties of the measured velocity components of the motions. Our findings support the idea that the rotational and translational components of two-arm motions in the positioning/orienting task are independently planned in extra-personal space, and are further combined in a hierarchical fashion to produce the observed motions. The tested models may serve as a basis for further investigations of issues pertinent to the generation of two-arm trajectories. Received: 27 March 1995 / Accepted in revised form: 17 September 1996  相似文献   

17.
Hydrodynamics predicts that swimming bacteria generate a propulsion force when a helical flagellum rotates because rotating helices necessarily translate at a low Reynolds number. It is generally believed that the flagella of motile bacteria are semirigid helices with a fixed pitch determined by hydrodynamic principles. Here, we report the characterization of three mutations in laboratory strains of Escherichia coli that produce different steady-state flagella without losing cell motility. E. coli flagella rotate counterclockwise during forward swimming, and the normal form of the flagella is a left-handed helix. A single amino acid exchange A45G and a double mutation of A48S and S110A change the resting flagella to right-handed helices. The stationary flagella of the triple mutant were often straight or slightly curved at neutral pH. Deprotonation facilitates the helix formation of it. The helical and curved flagella can be transformed to the normal form by torsion upon rotation and thus propel the cell. These mutations arose in the long-term laboratory cultivation. However, flagella are under strong selection pressure as extracellular appendages, and similar transformable flagella would be common in natural environments.  相似文献   

18.
The translational and rotational dynamics of tobacco mosaic virus in sodium phosphate buffer (pH =7.5) solutions has been investigated by polarized and depolarized light scattering Rayleigh linewidth studies. For concentrations ranging from 1.75 × 10?4 g ml?1 to 0.25 × 10?4 g ml?1 the translational diffusion coefficient (DT) has been found to be slightly concentration dependent and extrapolation to zero concentration gives D020°C = 0.34 ± 0.01 × 10?7 cm2S?1. A full analysis of the polarized spectra obtained at high and low scattering angles and the depolarized spectra at near zero scattering angles has enabled these techniques to be compared and the rotational diffusion constant DR to be determined. At a solution concentration of 1.75 × 10?4 g ml?1 a mean value is found to be DR20°C = 350 ± 30s?1. These values of DT and DR are in approximate agreement with calculations based on models of the tobacco mosaic virus molecule as a cylindrical rod.  相似文献   

19.
This study combined optical diffusometry and bead-based immunoassays to develop a novel technique for quantifying the growth of specific microorganisms and achieving rapid AST. Diffusivity rises when live bacteria attach to particles, resulting in additional energy from motile microorganisms. However, when UV-sterilized (dead) bacteria attach to particles, diffusivity declines. The experimental data are consistent with the theoretical model predicted according to the equivalent volume diameter. Using this diffusometric platform, the susceptibility of Pseudomonas aeruginosa to the antibiotic gentamicin was tested. The result suggests that the proliferation of bacteria is effectively controlled by gentamicin. This study demonstrated a sensitive (one bacterium on single particles) and time-saving (within 2 h) platform with a small sample volume (~0.5 μL) and a low initial bacteria count (50 CFU per droplet ~ 105 CFU/mL) for quantifying the growth of microorganisms depending on Brownian motion. The technique can be applied further to other bacterial strains and increase the success of treatments against infectious diseases in the near future.  相似文献   

20.
By dynamic light scattering, the intensity autocorrelation function, G2(tau) = B[1 + beta[g1(tau)[2], was obtained over the scattering angles (theta) from 30 to 130 degrees in steps of 10 degrees for semidilute solutions of muscle F-actin and of F-actin complexed with heavy meromyosin in the absence of ATP (acto-HMM), where B is the baseline and beta a constant. The main findings were: (1) A 0.5 mg/ml F-actin solution gave nonreproducible spectra at theta less than or equal to 40 degrees but quite reproducible spectra at theta greater than or equal to 50 degrees, with beta = 0.9-0.8 at all theta values. Nonreproducibility of spectra at low theta values was concluded to be due to restricted motions of very long filaments confined in cages or zig-zag tubing formed by a major fraction of filaments, where the very long filaments were those at a distant tail of an exponential length distribution and the major fraction of filaments were those with lengths around Ln-2Ln, Ln being the number-average length. Spectral widths were compared with theoretical ones for rigid rods averaged over the length distribution with Ln = 900 nm, and were suggested to be largely contributed at high theta values from bending motions of filaments. (2) Acto-HMM solutions at 0.5 mg/ml F-actin and at weight ratios of HMM to F-actin of 0.5-2 gave spectra which, with respect to theta, behaved very similarly to those of F-actin alone. The spectral widths, however, drastically decreased with the weight ratio up to unity and stayed virtually constant above unity. In contrast to a previous study (F.D. Carlson and A.B. Fraser, J. Mol. Biol. 89 (1974) 273), beta values of acto-HMM were as large as those of F-actin alone. Acto-HMM was concluded to travel a distance far greater than 1/K with a mobility smaller than that of F-actin, where K = (4 pi/lambda) sin(theta/2), lambda being the wavelength of light in the medium. These results suggest that acto-HMM gels are very soft even though they did not pour from an inverted cell. Based on several intuitive models which give a mutual relationship between the beta value and modes of motion of scatterers, we discuss the restricted motions responsible for nonreproducibility of spectra at low angles and large beta values of acto-HMM gels at all theta values and weight ratios so far studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号