首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Aluminium (Al) toxicity and drought stress are two major constraints for crop production in the world, particularly in the tropics. The variation in rainfall distribution and longer dry spells in much of the tropics during the main growing period of crops are becoming increasingly important yield-limiting factors with the global climate change. As a result, crop genotypes that are tolerant of both drought and Al toxicity need to be developed.

Scope

The present review mainly focuses on the interaction of Al and drought on root development, crop growth and yield on acid soils. It summarizes evidence from our own studies and other published/related work, and provides novel insights into the breeding for the adaptation to these combined abiotic stresses. The primary symptom of Al phytotoxicity is the inhibition of root growth. The impeded root system will restrict the roots for exploring the acid subsoil to absorb water and nutrients which is particularly important under condition of low soil moisture in the surface soil under drought. Whereas drought primarily affects shoot growth, effects of phytotoxic Al on shoot growth are mostly secondary effects that are induced by Al affecting root growth and function, while under drought stress root growth may even be promoted. Much progress has recently been made in the understanding of the physiology and molecular biology of the interaction between Al toxicity and drought stress in common bean (Phaseolus vulgaris L.) in hydroponics and in an Al-toxic soil.

Conclusions

Crops growing on acid soils yield less than their potential because of the poorly developed root system that limits nutrient and water uptake. Breeding for drought resistance must be combined with Al resistance, to assure that drought resistance is expressed adequately in crops grown on soils with acid Al-toxic subsoils.  相似文献   

2.

Background and aims

To improve vegetable crops adapted to low input and variable resource availability, better understanding is needed of root system functioning, including nitrogen and water capture.

Methods

This study quantified shoot and root development and patterns of water and nitrate capture of two lettuce cultivars subjected to temporary drought at two development stages (Trial 1) or to continuous, localized drought and/or nitrate shortage (Trial 2).

Results

In Trial 1, early drought slowed down shoot and root growth, whereas late drought enhanced root proliferation in the top 0.1 m. Nitrate capture during drought was sustained by increased nitrate inflow from deeper layers. Plants did not recover fully from drought after re-watering. In Trial 2, root proliferation was stimulated in the drier soil compartment partially compensating reduced water availability and nitrate mobility. Under nitrate shortage, root proliferation was enhanced in the compartment where nitrate was more abundant, irrespective of water availability.

Conclusions

Changes observed in the root system are ‘feed-forward’ mechanisms to sustain resource capture in a limiting growing environment. The type of stress (drought or nitrate shortage) affects coping strategies; nitrate concentration in the soil solution, combined with the nutritional status of the plant will determine the stress response.  相似文献   

3.

Background and aims

Lately sweet sorghum (S) has attracted great interest as an alternative feedstock for biofuel production due to its high yielding potential and better adaptation to drought than maize (M). However, little is known about the response of newly developed sweet sorghum genotypes to water deficits, especially at the root level and its water uptake patterns. The objective of this study was to compare the water uptake capacity, growth and developmental characteristics at the root and canopy levels of a sweet sorghum hybrid (Sorghum bicolor cv. Sucro 506) with those of maize (Zea mays cv. PR32F73) at two water regimes.

Methods

The trial was setup in a total of 20 rhizotrons (1?m3), where calibrated soil moisture probes were installed for monitoring and adjusting the soil moisture content to 25% (well-watered, W) and 12% (drought stress, D).

Results

DS was able to sustain its physiological activity close to that of WS plants, while maize was not. The biomass production potential of DS was reduced about 38%, while in maize the reduction was 47%. The water use efficiency (WUE), however, was increased by 20% in sweet sorghum and reduced in 5% in maize. Moreover, in contrast to maize the root length density and water uptake capacity of DS was enhanced. Root water uptake efficiency in DM was sustained close to its potential, but not in sweet sorghum.

Conclusions

In summary, the better adaptation to drought of sweet sorghum is explained by increased WUE, sustained physiological activity and enlarged root system. It is also associated with a reduced water uptake efficiency compared to its control but maintained compared to maize.  相似文献   

4.

Background and Aims

Plants growing on serpentine bedrock have to cope with the unique soil chemistry and often also low water-holding capacity. As plant-soil interactions are substantially modified by arbuscular mycorrhizal (AM) symbiosis, we hypothesise that drought tolerance of serpentine plants is enhanced by AM fungi (AMF).

Methods

We conducted a pot experiment combining four levels of drought stress and three AMF inoculation treatments, using serpentine Knautia arvensis (Dipsacaceae) plants as a model.

Results

AMF inoculation improved plant growth and increased phosphorus uptake. The diminishing water supply caused a gradual decrease in plant growth, accompanied by increasing concentrations of drought stress markers (proline, abscisic acid) in root tissues. Mycorrhizal growth dependence and phosphorus uptake benefit increased with drought intensity, and the alleviating effect of AMF on plant drought stress was also indicated by lower proline accumulation.

Conclusions

We documented the role of AM symbiosis in plant drought tolerance under serpentine conditions. However, the potential of AMF to alleviate drought stress was limited beyond a certain threshold, as indicated by a steep decline in mycorrhizal growth dependence and phosphorus uptake benefit and a concomitant rise in proline concentrations in the roots of mycorrhizal plants at the highest drought intensity.  相似文献   

5.

Background and aims

Pinyon pine (Pinus edulis Engelm.) is an important tree species in the western United States that has experienced large-scale mortality during recent severe drought. The influence of soil conditions on pinyon pine response to water availability is poorly understood. We investigated patterns of tree mortality and response of tree water relations and growth to experimental water addition at four sites across a three million year soil-substrate age gradient.

Methods

We measured recent pinyon mortality at four sites, and tree predawn water potential, leaf carbon isotope signature, and branch, leaf, and stem radial growth on 12 watered and unwatered trees at each site. Watered trees recieved fifty percent more than growing season precipitation for 6 years.

Results

Substrate age generally had a greater effect on tree water stress and growth than water additions. Pinyon mortality was higher on intermediate-aged substrates (50–55%) than on young (15%) and old (17%) substrates, and mortality was positively correlated with pinyon abundance prior to drought.

Conclusions

These results suggest high soil resource availability and consequent high stand densities at intermediate-age substrates predisposes trees to drought-induced mortality in semi-arid regions. The response of tree water relations to water addition was consistent with the inverse texture hypothesis; watering reduced tree water stress most in young, coarsely textured soil, likely because water rapidly penetrated deep in the soil profile where it was protected from evapotranspiration.  相似文献   

6.

Background and aims

Oaks are considered to be drought- and thermo-tolerant tree species. Nevertheless, species and provenances may differ in their ecological requirements. We hypothesised that (i) provenances from xeric sites are better adapted to drought than those from more humid sites, (ii) oaks direct root growth towards resource-rich layers, and (iii) air-warming promotes root growth.

Methods

To test different provenances of Quercus robur, Q. petraea and Q. pubescens, we conducted a model ecosystem experiment with young trees, grown on acidic and calcareous soil, subjected to drought, air warming, the combination of warming and drought, and a control.

Results

The results were only in partial agreement with the first hypothesis. As expected the provenances originating from drier sites produced more biomass than those from more humid sites under drought conditions. Surprisingly, however, they reacted more sensitive to water limiting conditions, as they produced also substantially more biomass under well-watered conditions. The drought treatment reduced root mass substantially in the upper soil. In agreement with the second hypothesis this led to a shift in the centre of root mass to lower depth, where water was still more available than closer to the soil surface. In contrast to the third hypothesis, the air-warming treatment, which was very mild however compared to climate change scenarios, had no significant effects on root growth.

Conclusions

Given that the provenances from drier sites showed more biomass loss at water limiting conditions than provenances from more humid sites, it remains questionable whether provenances from drier sites are better suited for a future climate.  相似文献   

7.

Background and aims

Extensive worldwide dryland degradation calls for identification of functional traits critical to dryland plant performance and restoration outcomes. Most trait examination has focused on drought tolerance, although most dryland systems are water and nutrient co-limited. We studied how drought impacts both plant water relations and nitrogen (N) nutrition.

Methods

We grew a suite of grasses common to the Intermountain West under both well-watered and drought conditions in the greenhouse. These grasses represented three congener pairs (Agropyron, Elymus, Festuca) differing in their habitat of origin (“wetter” or “drier”). We measured growth, water relations, N resorption efficiency and proficiency and photosynthetic N use efficiency in response to drought.

Results

Drought decreased growth and physiological function in the suite of grasses studied, including a negative impact on plant N resorption efficiency and proficiency. This effect on resorption increased over the course of the growing season. Evolutionary history constrained species responses to treatment, with genera varying in the magnitude of their response to drought conditions. Surprisingly, habitat of origin influenced few trait responses.

Conclusions

Drought impacted plant N conservation, although these responses also were constrained by evolutionary history. Future plant development programs should consider drought tolerance not only from the perspective of water relations but also plant mineral nutrition, taking into account the role of phylogeny.  相似文献   

8.

Background

The promoted root growth under developmental plasticity triggered specifically by mild drought stress (MDS) is known to contribute to maintained water uptake and dry matter production (DMP).

Aims

To examine whether the expression of developmental plasticity of root systems and its contribution to DMP would be affected by the levels of nitrogen (N) application.

Methods

Two genotypes (CSSL50 derived from Nipponbare/Kasalath cross and Nipponbare) were grown under soil moisture gradients with a line source sprinkler system. Three N fertilizer treatments were used; 25 (low), 75 (standard) and 150 kg N ha?1 (high) in 2009 and 60 (low), 120 (standard) and 180 kg N ha?1 (high) in 2011.

Results

Across varying N level treatments, there were no significant differences in any of the traits examined between the two genotypes under well-watered and severe drought stress conditions. In contrast, under MDS conditions (15–25 % w/w of soil moisture content (SMC) in 2009 and 17–25 % w/w of SMC in 2011), CSSL50 showed greater DMP than Nipponbare. The difference, however, varied with N level treatments since CSSL50’s greater root system development under MDS, was more pronounced at standard and high N levels than at low N level than it was for Nipponbare.

Conclusions

N application enhanced the expression of plasticity in root system development at standard and high N levels as compared with low N level under MDS conditions, which contributed to the maintenance of DMP.  相似文献   

9.

Background and aims

Knowledge of plant water fluxes is critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolving root water transport dynamics has been a particularly daunting task. Our objectives were to demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging.

Methods

Seedlings were propagated for 1–3 weeks in aluminum chambers containing sand. Pulses of water or deuterium oxide were then tracked through the root systems by collecting consecutive radiographs during exposure to a cold-neutron source. Water flux was manipulated by cycling on a growth lamp to alter foliar demand for water.

Results

Neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. After irrigation there was rapid root water uptake from the newly wetted soil, followed by hydraulic redistribution of water through the root system to roots terminating in dry soil. Water flux within individual roots responded differentially to foliar illumination based on supply and demand of water within the root system.

Conclusions

Sub-millimeter scale image resolution revealed timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages—relationships not well characterized by other techniques.  相似文献   

10.

Background and aims

DNA-based methods present new opportunities for overcoming the difficulties of accurately identifying and quantifying roots of different plant species in field soils. In order to quantify species-specific root biomass from measurements of DNA, consideration needs to be given to replication and ability to recover roots for calibration purposes in order to account for spatial, temporal and inter- and intra-species variation in DNA content of roots and distribution of roots within the soil profile.

Methods

This paper develops the field application of a DNA-based technique for direct quantification of roots in soils. The method was applied to a field experiment to investigate differences in root growth of acid-soil resistant and sensitive genotypes of perennial pasture grasses in an acid soil. DNA was extracted directly from soil and species-specific DNA was quantified using quantitative real-time PCR prior to estimation of root biomass.

Results

Root growth of the perennial grasses was quantified using the DNA-based technique, although separate calibration procedures were needed to convert DNA content to root mass for each species, soil layer and sampling date. Compared to acid-soil resistant genotypes, lesser root growth in acid soil layers and reduced above-ground dry matter production was observed for acid-soil sensitive genotypes.

Conclusions

The DNA-based method allowed genotypic differences in root growth to be assessed directly in soil and was advantageous for rapid processing of a large number of samples. However, high replication was still required to overcome spatial variability and separate calibrations were required for different species and soil depths across sampling times. The technique demonstrated greater root growth of acid-soil resistant perennial grasses which was beneficial for their establishment and persistence.  相似文献   

11.

Aims

Potatoes are a globally important source of food whose production requires large inputs of fertiliser and water. Recent research has highlighted the importance of the root system in acquiring resources. Here measurements, previously generated by field phenotyping, tested the effect of root size on maintenance of yield under drought (drought tolerance).

Methods

Twelve potato genotypes, including genotypes with extremes of root size, were grown to maturity in the field under a rain shelter and either irrigated or subjected to drought. Soil moisture, canopy growth, carbon isotope discrimination and final yields were measured. Destructively harvested field phenotype data were used as explanatory variables in a general linear model (GLM) to investigate yield under conditions of drought or irrigation.

Results

Drought severely affected the small rooted genotype Pentland Dell but not the large rooted genotype Cara. More plantlets, longer and more numerous stolons and stolon roots were associated with drought tolerance. Previously measured carbon isotope discrimination did not correlate with the effect of drought.

Conclusions

These data suggest that in-field phenotyping can be used to identify useful characteristics when known genotypes are subjected to an environmental stress. Stolon root traits were associated with drought tolerance in potato and could be used to select genotypes with resilience to drought.  相似文献   

12.

Aims

We assessed the temporal changes on microbial biomass in relation to changes in soil moisture, dissolved organic carbon and plant biomass during the summer season in a Mediterranean high-mountain grassland.

Methods

Temporal variations were tested by two-way ANOVA. The relationships among microbial biomass, plant biomass, soil water content, soil organic carbon, dissolved organic carbon and total soil nitrogen during the summer season were assessed by means of structural equation modeling.

Results

Microbial biomass did not show variation, while dissolved organic carbon and root biomass decreased throughout the summer. Aboveground plant biomass peaked in the middle of the summer, when soil water content was at its minimum. Soil water content directly and negatively affected soil microbial biomass, and positively affected dissolved organic carbon. Moreover soil microbial biomass and dissolved organic carbon were negatively related. Plant biomass effects on soil microbial biomass were driven by root biomass, which indirectly affected soil microbial biomass through effects on soil organic carbon and soil nitrogen.

Conclusions

The temporal dynamic of microbial biomass during the summer season appeared to differ from previous observations in temperate alpine communities, and indicated the drought resistance of the microbial community during the summer in Mediterranean high-mountain grasslands. During the dry period, microbial biomass may play an alternative role in soil carbon conservation.  相似文献   

13.

Aims

Forest thinning is expected to affect tree water use and carbon assimilation, but the related influence from climate variability is little known. Recent forest thinning in the Wungong catchment coincided with a record dry year following the thinning, which provides a rare opportunity to understand the climate influence on the thinning effect.

Methods

A field experiment was conducted to examine changes before and after thinning, especially the rainfall, soil moisture, leaf water status, tissue isotope signature (13?C and 15?N) and N concentration of overstorey and understorey juvenile trees of Eucalyptus marginata (Donn ex Sm.).

Results

Despite the post-thinning drought, surface soil was moister and juvenile jarrah plants were less water stressed, attributable to reduced rain interception and transpiration as a result of less canopy cover. The overstorey was under stress but mainly due to drought rather than by thinning. The concentration of N declined in both tree stems and juvenile leaves along with available N in soil, suggesting a soil N limitation. No treatment effects were detected from leaf relative water content and tissue isotope signature (13?C and 15?N).

Conclusions

The drought effects were superimposed over the thinning effects on overstorey growth, with stemwood δ13C being a major indicator of water stress. The water relations and carbon assimilation of understorey juveniles were however dependent more on topsoil moisture, and the wetter soil during the year following thinning enhanced growth activity and hence the depletion of 13?C (more negative δ13C) in juvenile leaves.  相似文献   

14.

Aims

To investigate root competition in a legume/non-legume mixture, and how root growth of the legume is affected by the competition at increasing nitrogen (N) supply.

Methods

Red beet (Beta vulgaris L.) and red clover (Trifolium pratense L.) were grown in transparent rhizotron tubes either in mixture or as sole crop at N supplies of 0, 75 or 150 kg ha-1. The root growth was evaluated by the root intensity on the rhizotron surface, root depth and plant uptake of 15N injected into the soil at the deeper part of the red clover root system.

Results

Competition with red beet decreased clover root intensity in deeper soil layers compared to clover grown as sole crop. The difference between clover in sole crop and in mixture was not evident at the highest N supply because the root growth of clover in sole crop appeared to be lowered at high N level. Increased N supply increased the dominance of red beet, but generally did not alter the root growth and distribution of the two species grown in mixture.

Conclusions

Clover root growth and rooting depth were inhibited by competition with red beet but the effect was not enhanced by increased N supply; hence the increased dominance of red beet at higher N level was likely due to its increased growth and competitiveness for other soil resources.  相似文献   

15.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   

16.

Background

Water and nutritional restrictions are limiting factors for the growth of Eucalyptus trees in tropical climates. In the dry season, boron (B) uptake is severely affected.

Aims

The objectives of this study were to evaluate the phloem mobility of B and whether its deficiency can increase plant sensitivity to osmotic stress. It was also tested to what extent foliar application of B could mitigate the negative effects of drought under low B supply.

Methods

Seedlings of a drought tolerant Eucalyptus urophylla (Blake, S. T.) clone were grown in nutrient solution, subjected to low availability of B for 25 days, and then submitted to a progressive osmotic stress. After imposition of osmotic stress, B was applied to young or mature leaves.

Results

B applications, mainly to mature leaf, stimulated root growth and delayed dehydration under osmotic stress and led to an increased B translocation and carbon isotopic composition. The expression of B transporters and pectin metabolism genes were also increased in water-stressed plants supplied with B by foliar application.

Conclusions

B deficiency led to increased plant dehydration and decreased root growth under osmotic stress. The application of B to mature leaf of water-stressed plants proved effective in mitigating the negative effects of water deficit in root growth.  相似文献   

17.

Aims

We examined the importance of partial seed consumption (cotyledon loss) by rabbits in the early establishment of seedlings of cork oaks restricted to nutrient-impoverished soils.

Methods

To determine the importance of cotyledons in the growth and development of seedlings, we simulated two levels of predation [light (30 % cotyledon loss) and heavy (60 % loss) partial consumption] and two soil nutrient contents (nutrient-poor soil, nutrient-rich soil). Seedlings height, root length, dry root and shoot biomass, specific leaf mass, leaf density, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations were determined.

Results

Results indicated that effect of nutrient level on the growth of the oak seedlings was more important than that of cotyledon biomass. However, in nutrient–poor soils, cotyledon biomass played a major role in the early performance of cork oaks. Acorns grown in nutrient-rich substrate, despite having greater aerial vigor, were slower to develop a vertical root, and hence less likely to reach permanent moisture. Cotyledon loss caused a decrease in the biomass of roots and shoots when acorns were heavily consumed, and as a result experienced a reduction in net photosynthetic rate, stomatal conductance and chlorophyll concentration. Survival of seedlings was unaffected by either soil type or cotyledon loss.

Conclusions

Our results show that effects of soil type on the survival of oak seedlings were more important than those of cotyledon biomass. However, in a competitive situation, cotyledon biomass, as an indicative of growth nutrient support rather than an energy source, could be vital in a nutrient-poor environment, particularly in Mediterranean climate regions and for species with little inherent drought tolerance (as is the case of Quercus spp.), where rapid root growth is required to ensure that contact with soil moisture is maintained over the first summer.  相似文献   

18.

Aims

Wild soybean accession PI 468917 [Glycine soja (Sieb. and Zucc.)] was examined for traits that could potentially be beneficial for development of drought resistant soybean cultivars.

Methods

Water use was examined in controlled environment chambers at three temperatures (25, 30, and 35 °C). Root morphology of plants grown in hydroponics was analyzed using digital imaging software.

Results

Wild soybean had lower transpiration efficiency in producing mass than the domesticated soybean cultivar Hutcheson at all temperatures. As soil dried, wild soybean decreased transpiration earlier (at a higher soil water content) than domesticated soybean, but only at 25 °C. Wild soybean had much greater root length than the modern soybean when grown at 25 or 30 °C in hydroponics, with the increase observed in the 0.25 to 0.50 mm diameter class. Wild soybean’s advantages dissipated at higher growth temperatures.

Conclusions

Wild soybean populations, potentially, can offer useful traits for improving drought resistance of modern soybean. Sensitive transpiration control in response to soil drying would contribute to ‘slow-wilting’ strategies known to be advantageous for drought resistance, and greater root length would enhance water acquisition from the soil profile. Use of the traits in breeding programs will require extending the temperature range for trait expression.  相似文献   

19.

Background and aims

Rice plants alternately experience anaerobic and aerobic conditions during their life cycle in rainfed lowlands. Each condition affects root growth differently. Our objective was to clarify the specific rice root response to aerobic conditions in rainfed lowlands.

Methods

At the Ubon Ratchathani Rice Research Center in northeastern Thailand, we obtained root samples from 17 ‘Surin1’ (Thai variety) BC3-derived lines and 7 CT9993-5-10-1-M × IR62266-42-6-2 doubled-haploid lines from flooded and non-flooded paddy fields at the reproductive stage in 2010 and 2011.

Results

In the non-flooded trial, rice was grown aerobically by draining the perched water; soil moisture at a depth of 20 cm fluctuated between ?10 and ?30 kPa. Deep rooting was likely promoted under aerobic conditions, but slightly drier soils under longer dry spells seemed to restrict root penetration, as the topsoil rapidly hardened during dry spells of only a few days. Fine-root development in the topsoil was inhibited under aerobic conditions.

Conclusions

Even without drought stress, rice roots respond significantly to the disappearance of standing water in rainfed lowlands via deep rooting and root branching. We identified one promising ‘Surin1’ BC3-derived line showing an adaptive response of deep rooting under aerobic conditions, which can be used as a breeding material for rainfed lowland rice in Thailand.  相似文献   

20.

Background and aims

Soil compaction strongly affects water uptake by roots. The aim of the work was to examine soil—plant interactions with focus on the impact of distribution of compacted soil layers on growth and water uptake by wheat roots.

Methods

The growth-chamber experiment was conducted on wheat growth in soil with compacted soil layers. The system for maintaining constant soil water potential and measurement of daily water uptake from variously compacted soil layers was used.

Results

Layered soil compaction differentiated vertical root distribution to higher extent for root length than root mass. The propagation rate of a water extraction front was the highest through layers of moderately compacted soil. The root water uptake rate was on average 67 % higher from moderately than heavily compacted soil layers. Correlations between water uptake and the length of thick roots were increasing with increasing level of soil compaction.

Conclusions

The study shows that root amount, water uptake, propagation of water extraction and shoot growth strongly depend on the existence of compacted layers within soil profile. The negative effects of heavily compacted subsoil layer on water uptake were partly compensated by increased uptake from looser top soil layers and significant contribution of thicker roots in water uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号