首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence is now accumulating for the involvement of the cystic fibrosis transmembrane conductance regulator (CFTR) in the control of the outwardly rectifying chloride channel (ORCC). We have examined the sensitivity of ORCC to the sulfonylurea drug glibenclamide in Hi-5 (Trichoplusia ni) insect cells infected with recombinant baculovirus expressing either wild-type CFTR, ΔF508-CFTR or E. coliβ galactosidase cDNA and in control cells either infected with virus alone or uninfected. Iodide efflux and single channel patch-clamp experiments confirmed that forskolin and 1-methyl-3-isobutyl xanthine (IBMX) or 7-methyl-1,3 dipropyl xanthine (DPMX) activate CFTR channels (unitary conductance: 9.1 ± 1.6 pS) only in cells expressing CFTR. In contrast, we identified 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS)-sensitive ORCC in excised membrane patches in any of the cells studied, with similar conductance (22 ± 2.5 pS at −80 mV; 55 ± 4.1 pS at +80 mV) and properties. In the presence of 500 μm SITS, channel open probability (P o ) of ORCC was reversibly reduced to 0.05 ± 0.01 in CFTR-cells, to 0.07 ± 0.02 in non-CFTR expressing cells and to 0.05 ± 0.02 in ΔF508-cells. In Hi-5 cells that did not express CFTR, glibenclamide failed to inhibit ORCC activity even at high concentrations (100 μm), whereas 500 μm SITS reversibly inhibited ORCC. In contrast in cells expressing CFTR or ΔF508, glibenclamide dose dependently (IC50= 17 μm, Hill coefficient 1.2) and reversibly inhibited ORCC. Cytoplasmic application of 100 μm glibenclamide reversibly reduced P o from 0.88 ± 0.03 to 0.09 ± 0.02 (wash: P o = 0.85 ± 0.1) in CFTR cells and from 0.89 ± 0.05 to 0.08 ± 0.05 (wash: P o = 0.87 ± 0.1) in ΔF508 cells. In non-CFTR expressing cells, glibenclamide (100 μm) was without effect on P o (control: P o = 0.89 ± 0.09, glib.: P o = 0.86 ± 0.02; wash: P o = 0.87 ± 0.05). These data strongly suggest that the expression of CFTR confers glibenclamide sensitivity to the ORCC in Hi-5 cells. Received: 23 October 1998/Revised: 29 December 1998  相似文献   

2.
The effect of the chloride channel blocker 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS) on the gating and amplitude of an endothelial chloride channel was explored using the outside-out configuration of the patch-clamp technique. Under control conditions the channel displayed two main gating modes: shut and fully open. Transitions to equally spaced subconductance states were rarely observed (less than 10 events/minute). At low concentrations (<45 μm), SITS increased the number of transitions to the three subconductance states in a concentration-dependent manner, while reducing the number of transitions to the fully open state. This effect was maintained after removing SITS from the bath solution, suggesting that the modifications in the channel induced by SITS were irreversible. All four conducting states had similar current-voltage relationships. At higher concentrations (>45 μm), SITS reduced the amplitude of all conducting states (three subconductances and fully open). This effect was fully reversible upon SITS removal from the bath solution. A half-inhibitory concentration (IC50) of 55.6 ± 2.7 μm (+60 mV) and 66.7 ± 2.2 (−60 mV) was obtained from the fitting to a Langmuir function. All these results are compatible with the existence of two SITS binding sites in the chloride channel: one of high affinity responsible for the increment in the number of transitions to subconductance states, and one low affinity binding site involved in the reduction of the amplitude of all conducting states. Received: 29 October 1998/Revised: 16 February 1999  相似文献   

3.
Hyperthermia induces transient changes in [Na+] i and [K+] i in mammalian cells. Since Cl flux is coupled with Na+ and K+ in several processes, including cell volume control, we have measured the effects of heat on [Cl] i using the chloride indicator, MQAE, with flow cytometry. The mean basal level of [Cl] i in Chinese hamster ovary cells was 12 mm. Cells heated at 42.0° or 45.0°C for 30 min had about a 2.5-fold increase in [Cl] i above unheated control values when measured immediately after heating. There was about a 3-fold decrease in [Na+] i under the same conditions, as measured by Sodium Green. The magnitude of the increase in [Cl] i depended upon time and temperature. The [Cl] i recovered in a time-dependent fashion to control values by 30 min after heating. When cells were heated at 45.0°C for 30 min in the presence of 1.5 mm furosemide, the heat-induced [Cl] i increase was completely blocked. Since furosemide inhibits the Na+/K+/2Cl cotransporter, Cl channels, and even ClHCO3 exchange, these ion transporters may be involved in the heat-induced increase in [Cl] i . Received: 15 June 1995/Revised: 9 April 1996  相似文献   

4.
Excised patches were used to study the kinetics of a Cl channel newly identified in cultured human fibroblasts (L132). The conductance of ca. 70 pS in 150 mm symmetrical Cl, and the marked outward rectification ascribe this channel to the ICOR family. Long single-channel recordings (>30 min) revealed that the channel spontaneously switches from a kinetic mode characterized by high voltage dependence (with activity increasing with depolarization; mode 1), into a second mode (mode 2) insensitive to voltage, and characterized by a high activity in the voltage range ±120 mV. On patch excision the channel always appeared in mode 1, which was maintained for a variable time (5–20 min). In most instances the channels then switched into mode 2, and never were seen to switch back, in spite of the eight patches that cumulatively dwelled in this mode 2.33-fold as compared to mode 1. Stability plots of long recordings showed that the channel was kinetically stable in both modes, allowing standard analysis of steady-state kinetics to be performed. Open and closed time distributions of mode 1 and mode 2 revealed that the apparent number of kinetic states of the channel was the same in the two modes. The transition from mode 1 into mode 2 was not instantaneous, but required a variable time in the range 5–60 sec. During the transition the channel mean open time was intermediate between mode 1 and mode 2. The intermediate duration in the stability plot however is not to be interpreted as if the channel, during the transition, rapidly switches between mode 1 and mode 2, but represents a distinct kinetic feature of the transitional channel. Received: 31 December 1998/Revised: 13 April 1999  相似文献   

5.
Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+] i . The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (K d = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at ∼−20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl). We conclude that different melanoma cell lines express a diversity of ion channel types. Received: 2 April 1996/Revised: 22 August 1996  相似文献   

6.
The lipid bilayer technique was used to examine the effects of the ATP-sensitive K+ channel inhibitor (glibenclamide) and openers (diazoxide, minoxidil and cromakalim) and Cl channel activators (GABA and diazepam) on two types of chloride channels in the sarcoplasmic reticulum (SR) from rabbit skeletal muscle. Neither diazepam at 100 μm nor GABA at 150 μm had any significant effect on the conductance and kinetics of the 75 pS small chloride (SCl) channel. Unlike the 150 pS channel, the SCl channel is sensitive to cytoplasmic glibenclamide with K i ∼ 30 μm. Glibenclamide induced reversible decline in the values of current (maximal current amplitude, I max and average mean current, I′) and kinetic parameters (frequency of opening F o , probability of the channel being open P o and mean open time, T o , of the SCl channel. Glibenclamide increased mean closed time, T c , and was a more potent blocker from the cytoplasmic side (cis) than from the luminal side (trans) of the channel. Diazoxide increased I′, P o , and T o in the absence of ATP and Mg2+ but it had no effect on I max and also failed to activate or remove the glibenclamide- and ATP-induced inhibition of the SCl channel. Minoxidil induced a transient increase in I′ followed by an inhibition of I max, whereas cromakalim reduced P o and I′ by increasing channel transitions to the closed state and reducing T o without affecting I max. The presence of diazoxide, minoxidil or cromakalim on the cytoplasmic side of the channel did not prevent [ATP] cis or [glibenclamide] cis from blocking the channel. The data suggest that the action(s) of these drugs are not due to their effects on the phosphorylation of the channel protein. The glibenclamide- and cromakalim-induced effects on the SCl channel are mediated via a ``flicker' type block mechanism. Modulation of the SCl channel by [diazoxide] cis and [glibenclamide] cis highlights the therapeutic potential of these drugs in regulating the Ca2+-counter current through this channel. Received: 2 September 1997/Revised: 20 March 1998  相似文献   

7.
The gating cycle of CFTR (Cystic Fibrosis Transmembrane conductance Regulator) chloride channels requires ATP hydrolysis and can be interrupted by exposure to the nonhydrolyzable nucleotide AMP-PNP. To further characterize nucleotide interactions and channel gating, we have studied the effects of AMP-PNP, protein kinase C (PKC) phosphorylation, and temperature on gating kinetics. The rate of channel locking increased from 1.05 × 10−3 sec−1 to 58.7 × 10−3 sec−1 when AMP-PNP concentration was raised from 0.5 to 5 mm in the presence of 1 mm MgATP and 180 nm protein kinase A catalytic subunit (PKA). Although rapid locking precluded estimation of P o or opening rate immediately after the addition of AMP-PNP to wild-type channels, analysis of locking rates in the presence of high AMP-PNP concentrations revealed two components. The appearance of a distinct, slow component at high [AMP-PNP] is evidence for AMP-PNP interactions at a second site, where competition with ATP would reduce P o and thereby delay locking. All channels exhibited locking when they were strongly phosphorylated by PKA, but not when exposed to PKC alone. AMP-PNP increased P o at temperatures above 30°C but did not cause locking, evidence that the stabilizing interactions between domains, which have been proposed to maintain CFTR in the open burst state, are relatively weak. The temperature dependence of normal CFTR gating by ATP was strongly asymmetric, with the opening rate being much more temperature sensitive (Q 10= 9.6) than the closing rate (Q 10= 3.6). These results are consistent with a cyclic model for gating of phosphorylated CFTR. Received: 28 August 1997/Revised: 4 February 1998  相似文献   

8.
采用膜片钳内面向外式记录技术,研究急性分离成年大鼠海马CAl区锥体神经元外向整流氯离子通道的氧化还原调控。发现细胞内侧给予氧化剂DTNB(5,5'-dithiobis-2-nitrobenzoic acid),可显著减弱氯通道的活动,IC50值为(28.05±2.42)μmol/L;还原剂DTT(dithiothreitol)对氯通道没有明显影响,但可逆转DTNB引起的抑制效应。说明DTNB不改变通道电导,其引起的通道活动减弱是由氯通道关闭时间延长而开放时间缩短所致。研究还发现,另一对氧化型和还原型谷胱甘肽具有与DTNB和DTT同样的效应。本研究结果显示,成年大鼠海马CA1区锥体神经元外向整流氯通道可以被细胞内氧化还原剂所调控。  相似文献   

9.
SqKv1A is a cDNA that encodes a Kv1 (Shaker-type) α-subunit expressed only in the giant axon and the parental giant fiber lobe (GFL) neurons of the squid stellate ganglion. We incorporated SqKv1A into a recombinant baculovirus for expression in the insect Sf9 cell line. Whole-cell patch-clamp recordings reveal that very few cells display functional potassium current (I K) if cultured at the standard postinfection temperature of 27°C. At 18°C, less SqKv1A protein is produced than at 27°C, but cells with I K currents are much more numerous and can survive for at least 20 days postinfection (vs. ∼5 days at 27°C). Activation and deactivation kinetics of SqKv1A in Sf9 cells are slower (∼3- and 10-fold, respectively) than those of native channels in GFL neurons, but have similar voltage dependencies. The two cell types show only subtle differences in steady-state voltage-dependence of conductance and inactivation. Rates of I K inactivation in 20 mm external K are identical in the two cell types, but the sensitivity of inactivation to external tetraethylammonium (TEA) and K ions differ: inactivation of SqKv1A in Sf9 cells is slowed by external TEA and K ions, whereas inactivation of GFL I K is largely insensitive. Functional differences are discussed in terms of factors that may be specific to cell-type, including the presence of presently unidentified Kv1 subunits in GFL neurons that might form heteromultimers with SqKv1A.  相似文献   

10.
P-glycoprotein (P-gp), the product of human MDR1 gene, which functions as an ATP-dependent drug efflux pump, is N-linked glycosylated at asparagine residues 91, 94, and 99 located within the first extracellular loop. We report here the biochemical characterization of glycosylation-deficient (Gly) P-gp using a vaccinia virus based transient expression system. The staining of HeLa cells expressing Gly P-gp (91, 94, and 99N→Q), with P-gp specific monoclonal antibodies, MRK-16, UIC2 and 4E3 revealed a 40 to 50% lower cell-surface expression of mutant P-gp compared to the wild-type protein. The transport function of Gly P-gp, assessed using a variety of fluorescent compounds indicated that the substrate specificity of the pump was not affected by the lack of glycosylation. Additional mutants, Gly D (91, 94, 99N→D) and GlyΔ (91, 94, 99 N deleted) were generated to verify that the reduced cell surface expression, as well as total expression, were not a result of the glutamine substitutions. Gly D and GlyΔ Pgps were also expressed to the same level as the Gly mutant protein. 35S-Methionine/cysteine pulse-chase studies revealed a reduced incorporation of 35S-methionine/cysteine in full length Gly P-gp compared to wild-type protein, but the half-life (∼3 hr) of mutant P-gp was essentially unaltered. Since treatment with proteasome inhibitors (MG-132, lactacystin) increased only the intracellular level of nascent, mutant P-gp, the decreased incorporation of 35S-methionine/cysteine in Gly P-gp appears to be due to degradation of improperly folded mutant protein by the proteasome and endoplasmic reticulum-associated proteases. These results demonstrate that the unglycosylated protein, although expressed at lower levels at the cell surface, is functional and suitable for structural studies. Received: 28 July 1999/Revised: 20 October 1999  相似文献   

11.
The influenza B virus protein, NB, was expressed in Escherichia coli, either with a C-terminal polyhistidine tag or with NB fused to the C-terminus of glutathione S-transferase (GST), and purified by affinity chromatography. NB produced ion channel activity when added to artificial lipid bilayers separating NaCl solutions with unequal concentrations (150–500 mm cis, 50 mm trans). An antibody to a peptide mimicking the 25 residues at the C-terminal end of NB, and amantadine at high concentration (2–3 mm), both depressed ion channel activity. Ion channels had a variable conductance, the lowest conductance observed being approximately 10 picosiemens. At a pH of 5.5 to 6.5, currents reversed at positive potentials indicating that the channel was more permeable to sodium than to chloride ions (PNa/PCl∼ 9). In asymmetrical NaCl solutions at a pH of 2.5, currents reversed closer to the chloride than to the sodium equilibrium potential indicating that the channel had become more permeable to chloride than to sodium ions (PCl/PNa∼ 4). It was concluded that, at normal pHs, NB forms cation-selective channels. Received: 6 March 1995/Revised: 17 November 1995  相似文献   

12.
Polyamine-induced inward rectification of cyclic nucleotide-gated channels was studied in inside-out patches from rat olfactory neurons. The polyamines, spermine, spermidine and putrescine, induced an `instantaneous' voltage-dependent inhibition with K d values at 0 mV of 39, 121 μm and 2.7 mm, respectively. Hill coefficients for inhibition were significantly < 1, suggesting an allosteric inhibitory mechanism. The Woodhull model for voltage-dependent block predicted that all 3 polyamines bound to a site 1/3 of the electrical distance through the membrane from the internal side. Instantaneous inhibition was relieved at positive potentials, implying significant polyamine permeation. Spermine also induced exponential current relaxations to a `steady-state' impermeant level. This inhibition was also mediated by a binding site 1/3 of the electrical distance through the pore, but with a K d of 2.6 mm. Spermine inhibition was explained by postulating two spermine binding sites at a similar depth. Occupation of the first site occurs rapidly and with high affinity, but once a spermine molecule has bound, it inhibits spermine occupation of the second binding site via electrostatic repulsion. This repulsion is overcome at higher membrane potentials, but results in a lower apparent binding affinity for the second spermine molecule. The on-rate constant for the second spermine binding saturated at a low rate (∼200 sec−1 at +120 mV), providing further evidence for an allosteric mechanism. Polyamine-induced inward rectification was significant at physiological concentrations. Received: 17 February 1999/Revised: 27 April 1999  相似文献   

13.
To test sodium channel structural models, we defined the epitopes for nineteen independently cloned monoclonal antibodies previously generated against purified, detergent-solubilized, adult rat skeletal muscle sodium channel protein using channel proteolysis, synthetic peptides, and fusion proteins. All identified epitopes were continuous and unique to the skeletal muscle subtype α-subunit. Of the nineteen independent clones, seventeen had epitopes located either in the origin of the amino-terminus or in the interdomain 2–3 region while only two antibodies had epitopes located in the mid-portion of the interdomain 1–2 region. No immunogenic regions were identified on the α-subunit's extracellular regions, interdomain 3–4 segment, or carboxyl-terminus or on channel β-subunits. While immune tolerance may explain the lack of immunogenicity of extracellular regions, the lack of immunogenicity of most of the channel's cytoplasmic mass may be due to segment inaccessibility from organization of these regions as globular domains, to insertion of parts of these regions into the membrane phase, or to interaction with other protein elements. The definition of monoclonal antibody epitopes allows us to reinterpret previously reported monoclonal antibody competition studies, providing independent support for our model of sodium channel cytoplasmic domain structure. In addition, these data suggest additional testable hypotheses concerning the interactions of the sodium channel amino- and carboxyl-termini with each other as well as with other protein elements. Received: 4 March 1998/Revised: 15 May 1998  相似文献   

14.
Macroscopic and unitary currents through stretch-activated Cl channels were examined in isolated human atrial myocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ and Ca2+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+] i ) was reduced, application of positive pressure via the pipette activated membrane currents under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by 60 mV per 10-fold change in the external Cl concentration, indicating that the current was Cl selective. The current was inhibited by bath application of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 9-anthracenecarboxylic acid (9-AC). β-Adrenergic stimulation failed to activate a Cl current. In single channel recordings from outside-out patches, positive pressure in the pipette activated the unitary current with half-maximal activation of 14.7 mm Hg at +40 mV. The current-voltage relationship of single channel activity obtained in inside-out patches was linear in symmetrical Cl solution with the averaged slope conductance of 8.6 ± 0.7 pS (mean ±sd, n= 10). The reversal potential shift of the channel by changing Cl concentration was consistent with a Cl selective channel. The open time distribution was best described by a single exponential function with mean open lifetime of 80.4 ± 9.6 msec (n= 9), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 11.5 ± 2.2 msec (n= 9) and that for the slow component of 170.2 ± 21.8 msec (n= 9). Major changes in the single channel activity in response to pressure were caused by changes in the interburst interval. Single channel activity was inhibited by DIDS and 9-AC in a manner similar to whole-cell configuration. These results suggest that membrane stretch induced by applying pressure via the pipette activated a Cl current in human atrial myocytes. The current was sensitive to Cl channel blockers and exhibited membrane voltage-independent bursting opening without sensitive to β-adrenergic stimulation. Received: 21 October 1996/Revised: 17 December 1997  相似文献   

15.
Lack of Conventional ATPase Properties in CFTR Chloride Channel Gating   总被引:3,自引:0,他引:3  
CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mm). Higher concentrations of vanadate (10 mm) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for this transition state analogue is considerably different than that of other ABC transporters. Received: 18 September 1995/Revised: 9 January 1996  相似文献   

16.
The gram-positive bacterium Mycobacterium phlei was treated with detergents. Reconstitution experiments using lipid bilayers suggested that the detergent extracts contain a channel forming protein. The protein was purified to homogeneity by preparative SDS-PAGE and identified as a protein with an apparent molecular mass of about 135 kDa. The channel-forming unit dissociated into subunits with a molecular mass of about 22 kDa when it was boiled in 80% dimethylsulfoxid (DMSO). The channel has on average a single channel conductance of 4.5 nS in 1 m KCl and is highly voltage-dependent in an asymmetric fashion when the protein is added to only one side of the membrane. Zero-current membrane potential measurements with different salts implied that the channel is highly cation-selective because of negative point charges in or near the channel mouth. Analysis of the single-channel conductance as a function of the hydrated cation radii using the Renkin correction factor and the effect of the negative point charges on the single-channel conductance suggest that the diameter of the cell wall channel is about 1.8 to 2.0 nm. The channel properties were compared with those of other members of the mycolata and suggest that these channels share common features. Southern blots demonstrated that the chromosome of M. phlei and other mycolata tested contain homologous sequences to mspA (gene of the cell wall porin of Mycobacterium smegmatis). Received: 22 December 2000/Revised: 10 April 2001  相似文献   

17.
The transport mechanisms of Ambystoma proximal tubule that mediate transcellular Cl absorption linked to Na+ were investigated in isolated perfused tubules using Cl-selective and voltage-recording microelectrodes. In control solutions intracellular activity of Cl (a i Cl ) is 11.3 ± 0.5 mm, the basolateral (V 1 ), apical (V 2 ), and transepithelial (V 3 ) potential differences are −68 ± 1.2 mV, +62 ± 1.2 mV and −6.4 ± 0.3 mV, respectively. When Na+ absorption is decreased by removal of organic substrates from the lumen, a i Cl falls by 1.3 ± 0.3 mm and V 2 hyperpolarizes by +11.4 ± 1.7 mV. Subsequent removal of Na+ from the lumen causes a i Cl to fall further by 2.3 ± 0.4 mm and V 2 to hyperpolarize further by +15.3 ± 2.4 mV. The contribution of transporters and channels to the observed changes of a i Cl was examined using ion substitutions and inhibitors. Apical Na/Cl or Na/K/2Cl symport is excluded because bumetanide, furosemide or hydrochlorothiazide have no effect on a i Cl . The effects of luminal HCO 3 removal and/or of disulfonic stilbenes argue against the presence of apical Cl-base exchange such as Cl-HCO3 or Cl-OH. The effects of basolateral HCO 3 removal, of basolateral Na+ removal and/or of disulfonic stilbenes are compatible with presence of basolateral Na-independent Cl-base exchange and Na-driven Cl-HCO3 exchange. Several lines of evidence favor conductive Cl transport across both the apical and basolateral membrane. Addition of the chloride-channel blocker diphenylamine-2-carboxylate to the lumen or bath, increases the a i Cl by 2.4 ± 0.6 mm or 2.9 ± 1.0 mm respectively. Moreover, following inhibition by DIDS of all anion exchangers in HCO 3-free Ringer, the equilibrium potential for Cl does not differ from the membrane potential V 2 . Finally, the logarithmic changes in a i Cl in various experimental conditions correlate well with the simultaneous changes in either basolateral or apical membrane potential. These findings strongly support the presence of Cl channels at the apical and basolateral cell membranes of the proximal tubule. Received: 14 November 1997/Revised: 6 July 1998  相似文献   

18.
19.
20.
We have characterized a Ca2+-dependent Cl current (ClCa) in cultured Sertoli cells from immature rat testis by using the whole cell recording patch-clamp technique. Cells dialyzed with pipette solutions containing 3 mm adenoside-triphosphate (ATP) and 1 μm free Ca2+, exhibited outward currents which were inhibited by 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and anthracene-9-carboxylic acid (9-AC) but insensitive to tetraethylammonium (TEA). Dialysis of cells with pipette solutions containing less than 1 nm free Ca2+ strongly reduced the currents indicating that they were Ca2+ dependent. With cells dialyzed with Cs+ glutamate-rich pipette solutions containing 0.2 mm EGTA, 10 μm ionomycin induced outward currents having properties of Ca2+-activated Cl currents. With ATP-free pipette solution, the magnitude of currents was not modified suggesting the direct control by Ca2+. By contrast, addition of 0.1 mm cAMP in the pipette solution or the superfusion of cells by a permeant analogue of cAMP strongly reduced the currents. These results may suggest that ClCa is inhibited by cAMP-dependent protein kinase. Finally, our results do not agree with the model of primary fluid secretion by exocrine cells, but are in agreement with a hyperpolarizing effect of cAMP in primary culture of Sertoli cells and the release of a low Cl and bicarbonate-rich primary fluid by these cells. Received: 30 November 1998/Revised: 2 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号