首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium thermocellum is a candidate organism for consolidated bioprocessing of lignocellulosic biomass into ethanol. However, commercial use is limited due to growth inhibition at modest ethanol concentrations. Recently, an ethanol-adapted strain of C. thermocellum was produced. Since ethanol adaptation in microorganisms has been linked to modification of membrane lipids, we tested the hypothesis that ethanol adaptation in C. thermocellum involves lipid modification by comparing the fatty acid composition and membrane anisotropy of wild-type and ethanol-adapted strains. Derivatization to fatty acid methyl esters provided quantitative lipid analysis. Compared to wild-type, the ethanol-adapted strain had a larger percentage of fatty acids with chain lengths >16:0 and showed a significant increase in the percentage of 16:0 plasmalogens. Structural identification of fatty acids was confirmed through mass spectral fragmentation patterns of picolinyl esters. Ethanol adaptation did not involve modification at sites of methyl branching or the unsaturation index. Comparison of steady-state fluorescence anisotropy experiments, in the absence and presence of ethanol, provided evidence for the effects of ethanol on membrane fluidity. In the presence of ethanol, both strains displayed increased fluidity by approximately 12%. These data support the model that ethanol adaptation was the result of fatty acid changes that increased membrane rigidity that counter-acted the fluidizing effect of ethanol.  相似文献   

2.
Saccharomyces cerevisiae is often stressed by the ethanol which accumulates during the production of bioethanol by the fermentation process. The study of ethanol-adapted S. cerevisiae strains provide an opportunity to clarify the molecular mechanism underlying the adaptation or tolerance of S. cerevisiae to ethanol stress. The aim of this study was to clarify this molecular mechanism by investigating the ethanol adaptation-associated intracellular metabolic changes in S. cerevisiae using a gas chromatography–mass spectrometry-based metabolomics strategy. A partial least-squares-discriminant analysis between the parental strain and ethanol-adapted strains identified 12 differential metabolites of variable importance with a projection value of >1. The ethanol-adapted strains had a more activated glycolysis pathway and higher energy production than the parental strain, suggesting the possibility that an increased energy production and energy requirement might be partly responsible for an increased ethanol tolerance. An increased glycine content also partly contributed to the higher ethanol tolerance of the ethanol-adapted strains. The decreased oleic acid content may be a self-protection mechanism of ethanol-adapted strains to maintain membrane integrity through decreasing membrane fluidity. We suggest that while being exposed to ethanol stress, ethanol-adapted S. cerevisiae cells may remodel their metabolic phenotype and the composition of their cell membrane to adapt to ethanol stress and acquire higher ethanol tolerance.  相似文献   

3.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H2O2, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H2O2 or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H2O2. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.  相似文献   

4.
We quantified the growth behavior of all available single gene deletion strains of budding yeast under ethanol stress. Genome-wide analyses enabled the extraction of the genes and determination of the functional categories required for growth under this condition. Statistical analyses revealed that the growth of 446 deletion strains under stress induced by 8% ethanol was defective. We classified these deleted genes into known functional categories, and found that many were important for growth under ethanol stress including several categories that have not been characterized, such as peroxisome. We also performed genome-wide screening under osmotic stress and identified 329 osmotic-sensitive strains. We excluded these strains from the 446 ethanol-sensitive strains to extract the genes whose deletion caused sensitivity to ethanol-specific (359 genes), osmotic-specific (242 genes), and both stresses (87 genes). We also extracted the functional categories that are specifically important for growth under ethanol stress. The genes and functional categories identified in the analysis might provide clues to improving ethanol stress tolerance among yeast cells.  相似文献   

5.
During industrial production process using yeast, cells are exposed to the stress due to the accumulation of ethanol, which affects the cell growth activity and productivity of target products, thus, the ethanol stress-tolerant yeast strains are highly desired. To identify the target gene(s) for constructing ethanol stress tolerant yeast strains, we obtained the gene expression profiles of two strains of Saccharomyces cerevisiae, namely, a laboratory strain and a strain used for brewing Japanese rice wine (sake), in the presence of 5% (v/v) ethanol, using DNA microarray. For the selection of target genes for breeding ethanol stress tolerant strains, clustering of DNA microarray data was performed. For further selection, the ethanol sensitivity of the knockout mutants in each of which the gene selected by DNA microarray analysis is deleted, was also investigated. The integration of the DNA microarray data and the ethanol sensitivity data of knockout strains suggests that the enhancement of expression of genes related to tryptophan biosynthesis might confer the ethanol stress tolerance to yeast cells. Indeed, the strains overexpressing tryptophan biosynthesis genes showed a stress tolerance to 5% ethanol. Moreover, the addition of tryptophan to the culture medium and overexpression of tryptophan permease gene conferred ethanol stress tolerance to yeast cells. These results indicate that overexpression of the genes for trypophan biosynthesis increases the ethanol stress tolerance. Tryptophan supplementation to culture and overexpression of the tryptophan permease gene are also effective for the increase in ethanol stress tolerance. Our methodology for the selection of target genes for constructing ethanol stress tolerant strains, based on the data of DNA microarray analysis and phenotypes of knockout mutants, was validated.  相似文献   

6.

Background

Microorganisms can adapt to perturbations of the surrounding environment to grow. To analyze the adaptation process of the yeast Saccharomyces cerevisiae to a high ethanol concentration, repetitive cultivation was performed with a stepwise increase in the ethanol concentration in the culture medium.

Methodology/Principal Findings

First, a laboratory strain of S. cerevisiae was cultivated in medium containing a low ethanol concentration, followed by repetitive cultivations. Then, the strain repeatedly cultivated in the low ethanol concentration was transferred to medium containing a high ethanol concentration and cultivated repeatedly in the same high-ethanol-concentration medium. When subjected to a stepwise increase in ethanol concentration with the repetitive cultivations, the yeast cells adapted to the high ethanol concentration; the specific growth rate of the adapted yeast strain did not decrease during repetitive cultivation in the medium containing the same ethanol concentration, while that of the non-adapted strain decreased during repetitive cultivation. A comparison of the fatty acid composition of the cell membrane showed that the contents in oleic acid (C18:1) in ethanol-adapted and non-adapted strains were similar, but the content of palmitic acid (C16:0) in the ethanol-adapted strains was lower than that in the non-adapted strain in media containing ethanol. Moreover, microscopic observation showed that the mother cells of the adapted yeast were significantly larger than those of the non-adapted strain.

Conclusions

Our results suggest that activity of cell growth defined by specific growth rate of the yeast cells adapted to stepwise increase in ethanol concentration did not decrease during repetitive cultivation in high-ethanol-concentration medium. Moreover, fatty acid content of cell membrane and the size of ethanol-adapted yeast cells were changed during adaptation process. Those might be the typical phenotypes of yeast cells adapted to high ethanol concentration. In addition, the difference in sizes of the mother cell between the non-adapted and ethanol strains suggests that the cell size, cell cycle and adaptation to ethanol are thought to be closely correlated.  相似文献   

7.
Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, has potential for commercial exploitation in converting fibrous biomass to ethanol. However, ethanol concentrations above 1% (w/v) are inhibitory to growth and fermentation, and this limits industrial application of the organism. Recent work with ethanol-adapted strains suggested that protein changes occurred during ethanol adaptation, particularly in the membrane proteome. A two-stage Bicine-doubled sodium dodecyl sulfate-polyacrylamide gel electrophoresis protocol was designed to separate membrane proteins and circumvent problems associated with membrane protein analysis using traditional gel-based proteomics approaches. Wild-type and ethanol-adapted C. thermocellum membranes displayed similar spot diversity and approximately 60% of proteins identified from purified membrane fractions were observed to be differentially expressed in the two strains. A majority (73%) of differentially expressed proteins were down-regulated in the ethanol-adapted strain. Based on putative identifications, a significant proportion of these down-regulated proteins were involved with carbohydrate transport and metabolism. Approximately one-third of the up-regulated proteins in the ethanol-adapted species were associated with chemotaxis and signal transduction. Overall, the results suggested that membrane-associated proteins in the ethanol-adapted strain are either being synthesized in lower quantities or not properly incorporated into the cell membrane.  相似文献   

8.
During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.  相似文献   

9.
10.
The bird cherry-oat aphid (Rhopalosiphum padi L.) is an important pest on cereals causing plant growth reduction without specific leaf symptoms. Breeding of barley (Hordeum vulgare L.) for R. padi resistance shows that there are several resistance genes, reducing aphid growth. To identify candidate sequences for resistance-related genes, we performed microarray analysis of gene expression after aphid infestation in two susceptible and two partially resistant barley genotypes. One of the four lines is a descendant of two of the other genotypes. There were large differences in gene induction between the four lines, indicating substantial variation in response even between closely related genotypes. Genes induced in aphid-infested tissue were mainly related to defence, primary metabolism and signalling. Only 24 genes were induced in all lines, none of them related to oxidative stress or secondary metabolism. Few genes were down-regulated, with none being common to all four lines. There were differences in aphid-induced gene regulation between resistant and susceptible lines. Results from control plants without aphids also revealed differences in constitutive gene expression between the two types of lines. Candidate sequences for induced and constitutive resistance factors have been identified, among them a proteinase inhibitor, a serine/threonine kinase and several thionins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Thermotolerant ethanol fermenting yeasts have been extensively used in industrial bioethanol production. However, little is known about yeast physiology under stress during bioethanol processing. This study investigated the physiological characteristics of the thermotolerant yeast Pichia kudriavzevii, strains NUNS-4, NUNS-5 and NUNS-6, under the multiple stresses of heat, ethanol and sodium chloride. Results showed that NUNS-4, NUNS-5 and NUNS-6 displayed higher growth rates under each stress condition than the reference strain, Saccharomyces cerevisiae TISTR5606. Maximum specific growth rates under stresses of heat (45°C), 15% v/v ethanol and 1·0 M sodium chloride were 0·23 ± 0·04 (NUNS-4), 0·11 ± 0·01 (NUNS-5) and 0·15 ± 0·01 h–1 (NUNS-5), respectively. Morphological features of all yeast studied changed distinctly with the production of granules and vacuoles when exposed to ethanol, and cells were elongated under increased sodium chloride concentration. This study suggests that the three P. kudriavzevii strains are potential candidates to use in industrial–scale fermentation due to a high specific growth rate under multiple stress conditions. Multiple stress-tolerant P. kudriavzevii NUNS strains have received much attention not only for improving large-scale fuel ethanol production, but also for utilizing these strains in other biotechnological industries.  相似文献   

13.
14.
This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.  相似文献   

15.
The kinetics of cell inactivation in the presence of ethanol at 20, 22.5% and 25% (v/v), was measured by progressive sampling and viable counting, and used as an inference of the ethanol resistance status of five non-Saccharomyces strains and one strain of Saccharomyces cerevisiae. The capacity of standard inocula of the same strains to establish growth at increasing initial ethanol concentrations was employed as a comparison. The effect of various different pre-culture conditions on the ethanol resistance of the 6 strains was analysed by the cell inactivation method and by the cell growth method. Exposing cells to 25% (v/v) ethanol for 4 min enabled the differentiation of the yeasts in terms of their resistance to ethanol. The results suggest that the two methods are generally concordant and that the cell inactivation method can, thus, be used to infer ethanol resistance of yeast strains.  相似文献   

16.
乙酸是木质纤维素类生物质水解液中的常见毒性抑制物,选育乙酸耐受性好的酿酒酵母菌株,有利于高效利用木质纤维素类生物质,发酵生产生物燃料和生物基化学品。目前对酿酒酵母抗逆性的研究多集中在转录水平,但对转运RNA (Transfer RNA,tRNA) 在耐受性中的作用研究较少。在对酿酒酵母抗逆性研究过程中发现,一些转运RNA基因在耐受性好的酿酒酵母菌株中转录明显上调。本文深入分析了精氨酸tRNA基因tR(ACG)D和亮氨酸tRNA基因tL(CAA)K过表达对酿酒酵母耐受木质纤维素水解液的影响。结果表明,在4.2 g/L乙酸胁迫条件下进行乙醇发酵时,过表达tL(CAA)K的菌株生长和发酵性能均优于对照酵母菌株,乙醇生产强度比对照菌株提高了29.41%,但过表达tR(ACG)D基因的菌株生长和代谢能力较对照菌株明显降低,体现了不同tRNA的不同调控作用。进一步分析发现,过表达tL(CAA)K的重组酵母菌株乙酸耐受性调控相关基因HAA1、MSN2和MSN4等胁迫耐受性相关转录因子编码基因的转录水平上调。本文的研究为选育高效利用木质纤维素资源进行生物炼制的酵母菌株提供了新的改造策略,也为进一步揭示酿酒酵母tRNA基因表达调控对抗逆性的影响提供了基础。  相似文献   

17.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells. During various stresses, the yeast Saccharomyces cerevisiae induces glycerol or trehalose synthesis, but the fluctuations in gene expression and intracellular levels of proline in yeast are not yet well understood. We previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. In this study, we examined the relationships between the gene expression profiles and intracellular contents of glycerol, trehalose, and proline under stress conditions. When yeast cells were exposed to 1 M sorbitol stress, the expression of GPD1 encoding glycerol-3-phosphate dehydrogenase is induced, leading to glycerol accumulation. In contrast, in the presence of 9% ethanol, the rapid induction of TPS2 encoding trehalose-6-phosphate phosphatase resulted in trehalose accumulation. We found that intracellular proline levels did not increase immediately after addition of sorbitol or ethanol. However, the expressions of genes involved in proline synthesis and degradation did not change during exposure to these stresses. It appears that the elevated proline levels are due primarily to an increase in proline uptake from a nutrient medium caused by the induction of PUT4. These results suggest that S. cerevisiae cells do not accumulate proline in response to sorbitol or ethanol stress different from other organisms.  相似文献   

18.
19.
Inositol phosphates (IPs) and their turnover products have been implicated to play important roles in stress signaling in eukaryotic cells. In higher plants genes encoding inositol polyphosphate kinases have been identified previously, but their physiological functions have not been fully resolved. Here we expressed Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2β) in two heterologous systems, i.e. the yeast Saccharomyces cerevisiae and in tobacco (Nicotiana tabacum), and tested the effect on abiotic stress tolerance. Expression of AtIpk2β rescued the salt-, osmotic- and temperature-sensitive growth defects of a yeast mutant strain (arg82Δ) that lacks inositol polyphosphate multikinase activity encoded by the ARG82/IPK2 gene. Transgenic tobacco plants constitutively expressing AtIpk2β under the control of the Cauliflower Mosaic Virus 35S promoter were generated and found to exhibit improved tolerance to diverse abiotic stresses when compared to wild type plants. Expression patterns of various stress responsive genes were enhanced, and the activities of anti-oxidative enzymes were elevated in transgenic plants, suggesting a possible involvement of AtIpk2β in plant stress responses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号