首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synergism between endogenous regulators of proliferation (protors), alkylating agents and hormones in vitro was studied. The effects were monitored by the incorporation of 3H-TdR into human and rat short term bone marrow cultures and by the formation of mouse granulocyte-macrophage colonies in semisolid agar capillaries. An additive and/or slight potentiating synergism was demonstrated between different types of inhibitory protors (GI-3S2, GI-3S3 and GI-3B), between GI-3 and hydrocortisone, and between GI-3 and the alkylating agents (adriamycin, dianhydrogalactitol) examined. The results offer a real possibility of strengthening the inhibition of neoplastic proliferation without increasing cytotoxicity of the drugs used.  相似文献   

2.
The carcinogenic process in the liver is a multistep process, characterised by an altered ratio between cell proliferation and cell death. In the last few years, we have undertaken studies aimed at determining the possible differences exhibited by two different types of cell proliferation, namely compensatory regeneration and direct hyperplasia at a molecular and cellular level. These two types of proliferative stimuli appear to play different roles in liver carcinogenesis. The scope of this article is to summarise the present knowledge about the differences in the expression of genes involved in the entry of liver cells into cell cycle, between liver regeneration following cell loss and/or cell death and direct hyperplasia induced by primary mitogens.  相似文献   

3.
Recent attention has focused on the role keratinocytes (KC) may play in the induction of T cell-mediated inflammatory responses in skin, particularly because KC, when activated by immunologic stimuli, express MHC class II Ag and secrete immunomodulatory cytokines. We tested the capacity of normal human KC that were stimulated with PMA to induce PBMC proliferation. PMA-treated, but not untreated, KC induced proliferation of allogeneic as well as autologous PBMC; in addition, when purified CD4+ or CD8+ T cells were used as responders, each subset proliferated. PBMC proliferation was not due to direct action of PMA on PBMC, nor to contamination of KC cultures with Langerhans cells (LC) or dermal APC. Pretreatment with different protein kinase C inhibitors abrogated the capacity of PMA-stimulated KC to induce proliferation. Paraformaldehyde-fixed PMA-KC stimulated PBMC proliferation, whereas supernatants from PMA-treated KC failed to do so, indicating that a membrane-associated activity on PMA-KC contributes to the induction of PBMC proliferation. PMA induced intercellular adhesion molecule-1 (ICAM-1) expression on KC; furthermore, mAb against ICAM-1 or against its ligand lymphocyte function-associated Ag (LFA-1) (CD11a/CD18) significantly, but incompletely, reduced the stimulatory capacity of PMA-treated KC, indicating that ICAM-1/LFA-1 interaction contributed to PBMC proliferation. IFN-gamma or TNF-alpha also induced ICAM-1 on KC, but these KC failed to stimulate proliferation, suggesting that PMA induces additional signals from KC, which act in concert with ICAM-1 to promote proliferation. Finally, mAb against HLA-ABC or HLA-DR did not inhibit proliferation. We conclude that PMA can activate KC to stimulate T cell proliferation in a MHC-independent fashion. This activation is mediated by protein kinase C and in part by the induction of ICAM-1 expression on KC.  相似文献   

4.
Many cytokines (including IL-1, IL-2, IL-4, IL-6, and TNF-alpha) have been shown to induce thymocyte proliferation in the presence of PHA. In this report, we demonstrate that certain cytokine combinations induce thymocyte proliferation in the absence of artificial comitogens. IL-1 alpha, IL-6, and TNF-alpha enhanced the proliferation of whole unseparated thymocytes in the presence of IL-2, whereas none of them induced thymocyte proliferation alone. In contrast, of these three enhancing cytokines, only IL-6 enhanced IL-4-induced proliferation. We also separated thymocytes into four groups based on their expression of CD4 and CD8, and investigated their responses to various cytokines. The results indicate that each cytokine combination affects different thymocyte subsets; thus, IL-1 alpha enhanced the proliferation of CD4-CD8- double negative (DN) thymocytes more efficiently than IL-6 in the presence of IL-2, whereas IL-6 enhanced the responses of CD4+CD8- and CD4-CD8+ single positive (SP) thymocytes to IL-2 or IL-4 better than IL-1 alpha. TNF-alpha enhanced the proliferation of both DN and both SP subsets in the presence of IL-2 and/or IL-7. None of these combinations induced the proliferation of CD4+CD8+ double positive thymocytes. Finally, DN were separated into CD3+ and CD3- populations and their responsiveness was investigated, because recent reports strongly suggest that CD3+ DN thymocytes are a mature subset of different lineage rather than precursors of SP thymocytes. CD3+ DN proliferated in response to IL-7, TNF-alpha + IL-2, and IL-1 + IL-2. CD3- DN did not respond to IL-7 or to IL-1 + IL-2, but did respond to TNF-alpha + IL-2. Finally, we detected TNF-alpha production by a cloned line of thymic macrophages, as well as by DN adult thymocytes. These results suggest that cytokines alone are capable of potent growth stimuli for thymocytes, and indicate that different combinations of these molecules act selectively on thymocytes at different developmental stages.  相似文献   

5.
Polyclonal stimuli like phorbol myristate acetate (PMA) plus calcium ionophore (Ca-I), concanavalin A (ConA) or anti-CD3 plus anti-CD28 (αCD3/αCD28) are widely used T cell stimuli. All three stimuli act at different sites and in different ways to activate the T cell receptor pathway and are widely used in different concentrations, stimulation durations and read-out systems. This study was designed to establish the most suitable polyclonal stimulus in human peripheral blood mononuclear cells (PBMC) experiments by assessing the kinetics of cell viability, present immunophenotypes, proliferation, and cytokine production of the PBMC. In addition, changes in these read-out parameters due to cryopreservation have been investigated by comparing fresh and cryopreserved PBMC cultures at days 1, 3, 5, and 7. This study showed a reduction in the cytokine levels after cryopreservation of PMA/Ca-I stimulated PBMC, whereas no significant differences due to the cryopreservation were observed in ConA or αCD3/αCD28 stimulated PBMC. Cryopreservation did not alter the maximal proliferation capacity of ConA or αCD3/αCD28 stimulated PBMC, whereas it did delay the proliferation. Although cryopreservation had no effect on the CD3+CD4+ or CD3+CD8+ T cell subsets, PMA/Ca-I significantly reduced the amount of both T cell subsets over time.In conclusion, PMA/Ca-I is suitable as a positive control in experiments where high cytokine production is expected and only fresh PBMC are used. Proliferation and effects on the T cell subsets in long-term PBMC cultures should use ConA or αCD3/αCD28 as positive control.  相似文献   

6.
A series of bisindolylmaleimide (Bis) compounds were designed as analogs of the natural compound staurosporine (STS), which is a potent inducer of apoptosis. Many of the Bis analogs appear to be highly selective inhibitors of the protein kinase C (PKC) family, including PKC-alpha, -beta, -gamma, -delta, -epsilon, and -zeta, unlike STS, which is an inhibitor of a broad spectrum of protein kinases. In this report we describe the effects of the Bis analogs, Bis-I, Bis-II, Bis-III and Ro-31-8220 on the survival and proliferation of HL-60 cells, which have been widely used as a model cell system for studying the biological roles of PKC. Treatment of HL-60 cells with Bis-I, Bis-II, Bis-III, or Ro-31-8220 blocked phosphorylation of the PKC target protein Raf-1 with equal potency but did not appear to affect the general phosphorylation of proteins by other kinases. However, the biological effects of the Bis compounds were different: Bis-I and Bis-II had no observable effects on either cell survival or proliferation; Bis-III inhibited cell proliferation but not survival, whereas Ro-31-8220 induced apoptosis. These results indicated that the members of the PKC family which could be inhibited by the Bis analogs were required neither for survival nor proliferation of HL-60 cells. Analyses of cells treated with Ro-31-8220 showed that the apoptotic effect of Ro-31-8220 on HL-60 cells was mediated by a well-characterized transduction process of apoptotic signals: i.e., mitochondrial cytochrome c efflux and the activation of caspase-3 in the cytosol. Moreover, the ability of Ro-31-8220 to induce apoptotic activation was completely inhibited by the over-expression of the apoptotic suppressor gene, Bcl-2, in the cells. Interestingly, proliferation of the Bcl-2-over-expressing cells was still sensitive to the presence of Ro-31-8220, suggesting that the inhibitory effects of Ro-31-8220 on viability and cell proliferation were mediated by different mechanisms. In particular, the apoptotic effect of Ro-31-8220 on cells was not altered by the presence of an excess amount of the other Bis analogs, suggesting that this effect is mediated by a factor(s) other than PKC or by a mechanism which was not saturable by the other Bis analogs. Finally, structure-function analyses of compounds related to Ro-31-8220 revealed that a thioamidine prosthetic group in Ro-311-8220 was largely responsible for its apoptotic activity.  相似文献   

7.
Optimal proliferation of T cells although initiated via ligation of the CD3/TCR complex requires additional stimulation resulting from adhesive interactions between costimulatory receptors (R) on T cells and their counter-R on APC. At least four distinct adhesion molecules (counter-R) present on APC, B7, ICAM-1 (CD54), LFA-3 (CD58), and VCAM-1 have been individually shown to costimulate T cell activation. Because some of these molecules may be expressed simultaneously on APC, it has been difficult to examine relative contributions of individual counter-R during the induction of T cell proliferation. We have produced soluble IgC gamma 1 fusion chimeras (receptor globulins or Rg) of B7, ICAM-1, LFA-3, and VCAM-1 and compared their relative abilities to costimulate proliferation of resting or Ag-primed CD4+ T cells. When co-immobilized with mAb directed at TCR alpha beta or CD3 but not CD2 or CD28, each Rg induced proliferation of both resting and Ag-primed CD4+ cells. In contrast, similarly co-immobilized CD7 Rg or ELAM-1 Rg were ineffective. Resting CD4+ T cells produced more IL-2, expressed significantly higher levels of IL-2R alpha, and proliferated more efficiently when costimulated with either ICAM-1 Rg or VCAM-1 Rg than with B7 Rg or LFA-3 Rg. CD4+ CD45RO+ memory T cells proliferated more vigorously in response to the costimulation by each of the four Rg than CD4+ CD45RA+ naive T cells. In contrast with the behavior of resting CD4+ T cells, proliferation of Ag-preactivated CD4+ T cells was most efficient when costimulated by B7 Rg. The costimulatory effect of LFA-3 Rg on Ag-primed CD4+ T cells was weaker than that of B7 Rg but was significantly greater than that of either ICAM-1 Rg or VCAM-1 Rg. These results suggest that resting and Ag-primed CD4+ T cells preferentially respond by proliferation to different costimulatory counter-R. ICAM-1 and VCAM-1 may be involved in the initiation of proliferation of Ag-responsive T cells, and B7 and LFA-3 may facilitate sustained proliferation of Ag-primed T cells. The cumulative costimulation by the above counter-R may facilitate optimal expression of various regulatory and effector functions of T cells.  相似文献   

8.
This report examines the antigen-specific inhibition of the IL-2-driven proliferation of autoantigen-reactive, human T cells. Human, myelin basic protein (MBP)-reactive CD4+ cell lines and clones were isolated and maintained in culture by use of IL-2 and periodic antigen stimulation. When freshly isolated antigen-presenting cells (APC) were present, MBP induced proliferation of MBP-reactive T cell populations. However, under different culture conditions, MBP reduced the IL-2-driven proliferation of some MBP-reactive T cell populations. The inhibition of IL-2-driven proliferation did not appear to require CD8+ or OKM 1+ cells since these were not detected when inhibition studies were performed at least 9 days after the last restimulation by irradiated APC and MBP. Supraoptimal concentrations of MBP were not required for inhibition of proliferation. Some heterogeneity of response was apparent since MBP inhibited the IL-2-driven proliferation of some T cell clones while for others MBP had either no effect or produced slight enhancement of proliferation. These results demonstrate an antigen-specific, in vitro immune mechanism that reduces the IL-2-dependent proliferation of autoantigen-reactive, human T cells.  相似文献   

9.
Differentiation, cancer, and anticancer activity   总被引:2,自引:0,他引:2  
Carcinogenesis is a multistep process that results from the development of a variety of defects in the control of differentiation and proliferation. To investigate this concept further, 3T3 T mesenchymal stems cells were employed to establish that a distinct sequence of biological processes is involved in the control of differentiation and proliferation, and that these processes are integrally regulated. Specific defects in these regulatory processes were next established as being involved in carcinogenesis. These defects, however, were found not to be absolute; rather, they appear to involve changes in the stringency by which differentiation and proliferation are integrally regulated. Finally, it was established that when normal or transformed stem cells are induced to undergo nonterminal differentiation (which is one step in the integrated control of proliferation and differentiation), they can be made resistant to carcinogenesis or to revert to a nontransformed state. These data provide strong evidence that a critically important requirement for normal homeostasis is maintenance of intact cellular mechanisms to integrally regulate differentiation and proliferation.  相似文献   

10.
11.
Vascular smooth muscle cells (VSMCs) proliferation is a key process in atherosclerosis. However, little is known about the underlying mechanisms, leading to a lack of effective therapy. This study was to investigate whether dopamine receptor 1 (DR1) is involved in the VSMCs proliferation and related mechanisms. A7r5 cells were treated with oxidized low-density lipoprotein (ox-LDL, 10, 20, 50, 100, 200 µg/mL) in the presence or absence of the SKF38393 (DR1agonist), SCH23390 (DR1antiagonist), SP600125 (JNK inhibitor), PD98059(ERK1/2 inhibitor) or NAC (ROS inhibitor). Cell proliferation and related signaling pathway were evaluated. The expression of DR1 was negatively correlated with increasing of cell proliferation caused by ox-LDL. Cell proliferation and ROS generation in response to ox-LDL were prevented by DR1 agonist or over-expression. The peroxiredoxins protein (Prx1, 2, 3, 5, 6) were increased in A7r5 cells treated with ox-LDL; however, only Prx3 dramatically increased after activation of DR1 compared with ox-LDL group, which is related to activation of JNK/c-Jun pathway. In addition, ERK is associated with the restraining effects of DR1 activation. DR1 activation inhibits VSMCs proliferation primarily by JNK/c-Jun dependent increasing of Prx3, suggesting DR1 a potential target for the prevention of vascular proliferation disease.  相似文献   

12.
 Both the proliferation and differentiation of ventral diaphragm myoblasts are controlled by ecdysteroid during metamorphosis of the moth, Manduca sexta, but the responses have different hormonal requirements. Tonic exposure to moderate levels of ecdysteroid are required to stimulate myoblast proliferation. This is due to the presence of an ecdysteroid-dependent control point in the G2 phase of the cell cycle. As a result, proliferation can be repeatedly turned on or off simply by adjusting the concentration of ecdysteroid to be above or below a critical threshold concentration. In contrast, high levels of ecdysteroid trigger irreversible proliferative arrest and differentiation of myofibers. Myoblast proliferation and differentiation also differ in their response to the juvenile hormone mimic, methoprene. Ecdysteroid-dependent proliferative arrest and differentiation are blocked by coculture with methoprene but methoprene has no effect on ecdysteroid-dependent proliferation. In the animal, premature exposure to high levels of ecdysteroid in the absence of juvenile hormone triggers precocious differentiation of the myoblasts, resulting in the formation of several thin bands of muscle rather than a complete diaphragm. Thus, ecdysteroid and juvenile hormone collaborate to determine the size and shape of the adult musculature. Received: 12 November 1998 / Accepted: 23 December 1998  相似文献   

13.
The role of integrins in muscle differentiation was addressed by ectopic expression of integrin alpha subunits in primary quail skeletal muscle, a culture system particularly amenable to efficient transfection and expression of exogenous genes. Ectopic expression of either the human alpha5 subunit or the chicken alpha6 subunit produced contrasting phenotypes. The alpha5-transfected myoblasts remain in the proliferative phase and are differentiation inhibited even in confluent cultures. In contrast, myoblasts that overexpress the alpha6 subunit exhibit inhibited proliferation and substantial differentiation. Antisense suppression of endogenous quail alpha6 expression inhibits myoblast differentiation resulting in sustained proliferation. These effects of ectopic alpha subunit expression are mediated, to a large extent, by the cytoplasmic domains. Ectopic expression of chimeric alpha subunits, alpha5ex/6cyto and alpha6ex/5cyto, produced phenotypes opposite to those observed with ectopic alpha5 or alpha6 expression. Myoblasts that express alpha5ex/6cyto show decreased proliferation while differentiation is partially restored. In contrast, the alpha6ex/5cyto transfectants remain in the proliferative phase unless allowed to become confluent for at least 24 h. Furthermore, expression of human alpha5 subunit cytoplasmic domain truncations, before and after the conserved GFFKR motif, shows that this sequence is important in alpha5 regulation of differentiation. Ectopic alpha5 and alpha6 expression also results in contrasting responses to the mitogenic effects of serum growth factors. Myoblasts expressing the human alpha5 subunit differentiate only in the absence of serum while differentiation of untransfected and alpha6-transfected myoblasts is insensitive to serum concentration. Addition of individual, exogenous growth factors to alpha5-transfected myoblasts results in unique responses that differ from their effects on untransfected cells. Both bFGF or TGFbeta inhibit the serum-free differentiation of alpha5- transfected myoblasts, but differ in that bFGF stimulates proliferation whereas TGF-beta inhibits it. Insulin or TGF-alpha promote proliferation and differentiation of alpha5-transfected myoblasts; however, insulin alters myotube morphology. TGF-alpha or PDGF-BB enhance muscle alpha-actinin organization into myofibrils, which is impaired in differentiated alpha5 cultures. With the exception of TGF- alpha, these growth factor effects are not apparent in untransfected myoblasts. Finally, myoblast survival under serum-free conditions is enhanced by ectopic alpha5 expression only in the presence of bFGF and insulin while TGF-alpha and TGF-beta promote survival of untransfected myoblasts. Our observations demonstrate (1) a specificity for integrin alpha subunits in regulating myoblast proliferation and differentiation; (2) that the ratio of integrin expression can affect the decision to proliferate or differentiate; (3) a role for the alpha subunit cytoplasmic domain in mediating proliferative and differentiative signals; and (4) the regulation of proliferation, differentiation, cytoskeletal assembly, and cell survival depend critically on the expression levels of different integrins and the growth factor environment in which the cells reside.  相似文献   

14.
We have established a heart slice primary culture, which allows us to mechanically separate distinct cardiac cell populations and assay their relative mitogenic and trophic effects on cardiac myocyte proliferation and survival. Using this system, we have found that a signal(s) from the epicardium, but not the trabeculae and endocardium, is required in embryonic day 10 (E10) chick heart slices for continued cardiac myocyte proliferation and survival. An examination of potential epicardial growth or trophic factors has revealed that blockade of either retinoic acid (RA) or erythopoietin (epo) signaling from the epicardium inhibits cardiac myocyte proliferation and survival. The blockade of cardiac myocyte proliferation following administration of an RA antagonist can be rescued by exogenous epo. Conversely, the blockade of cardiac myocyte proliferation following administration of an anti-epo receptor antisera can be rescued by exogenous RA. Thus, our findings suggest that RA and epo signals work in parallel to support myocardial cell proliferation. In addition, we have found that these factors do not act directly on myocardial cells. Rather, they induce another soluble factor(s) in the epicardium that directly regulates proliferation of cardiac myocytes. We therefore postulate that the epicardium controls normal heart growth in ventricular segments of the embryonic chick heart by secreting a cardiac myocyte mitogen whose expression (or activity) is regulated by both RA and erythropoietin signaling.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) affects B cells at all stages in development. It appears to be involved in lymphopoiesis and is required for the development of plasma cells secreting all secondary isotypes. Its ability to inhibit proliferation and stimulate apoptosis suggest that it may be involved both in germinal center development and regulation of B-cell proliferation at sites of high antigen load such as the gastrointestinal tract. Although TGF-beta appears to be required for the generation of B cells secreting secondary isotypes, it inhibits secretion of IgM and IgA from cells expressing those isotypes. In this regard, TGF-beta may alter the level of RNA processing factors either directly or indirectly by inhibiting progression through the cell cycle. One of the best characterized effects of TGF-beta is its ability to stimulate isotype switching to IgA in both mouse and man. There is some controversy concerning its mechanism of action in this process, but its critical role is without question. The controversy may stem in part from an inability to separate the effects of endogenous and exogenous TGF-beta in the multiple models of isotype switching. The influence of endogenous TGF-beta is perhaps best exemplified by analysis of production of the different classes of IgG in mouse strains producing different levels of TGF-beta.  相似文献   

16.
Occupancy of new habitats through dispersion is a central process in nature. In particular, long-distance dispersal is involved in the spread of species and epidemics, although it has not been previously related with cancer invasion, a process that involves cell spreading to tissues far away from the primary tumour.Using simulations and real data we show that the early spread of cancer cells is similar to the species individuals spread and we suggest that both processes are represented by a common spatio-temporal signature of long-distance dispersal and subsequent local proliferation. This signature is characterized by a particular fractal geometry of the boundaries of patches generated, and a power-law scaled, disrupted patch size distribution. In contrast, invasions involving only dispersal but not subsequent proliferation (“physiological invasions”) like trophoblast cells invasion during normal human placentation did not show the patch size power-law pattern. Our results are consistent under different temporal and spatial scales, and under different resolution levels of analysis.We conclude that the scaling properties are a hallmark and a direct result of long-distance dispersal and proliferation, and that they could reflect homologous ecological processes of population self-organization during cancer and species spread. Our results are significant for the detection of processes involving long-range dispersal and proliferation like cancer local invasion and metastasis, biological invasions and epidemics, and for the formulation of new cancer therapeutical approaches.  相似文献   

17.
Extracellular matrix (ECM) proteins play a critical role in many cellular functions, from spreading, migration and proliferation to apoptosis. This role can be altered when proteins of the native ECM are adsorbed to different substrates which cause structural modifications that can influence their biological function. The effects on CaCo-2 cells of laminin-1, fibronectin, collagen-1 and ECM gel adsorbed to glass and to tissue culture polystyrene (PS) were compared in terms of adhesion, proliferation, shapes and spreading of cells in culture. Significant differences between glass and PS surfaces were observed for proliferation and cell shape. Protein surfaces prepared on PS substrates had, in most cases, more pronounced effects on cells than uncoated PS, especially if coated by collagen-1. Adsorbed ECM gel was the most adhesive for cells, but its effect on cell proliferation was not notably different from the controls (glass or PS). These findings indicate that the choice of the substrate can have a significant effect on experimental results and should be taken into consideration when comparing results obtained on different surfaces.  相似文献   

18.
19.
20.
Thiazolidinediones induce adipocyte differentiation and thereby limit proliferative potential; hence, early investigations focused on their ability to modulate cellular proliferation and apoptosis. Several lines of evidence indicate significant thiazolidinedione-mediated antitumor activity. An emerging view is that some antitumor effects are totally or partially peroxisome proliferator-activated receptor-gamma (PPARgamma) dependent, whereas others are PPARgamma independent. The aim of this review is to examine the current evidence about the molecular mechanisms by which thiazolidinediones augment cellular differentiation, inhibit cellular proliferation, and induce apoptosis. We first address the role of thiazolidinediones and/or PPARgamma on Wnt/beta-catenin signaling pathway as it affects cellular differentiation and then discuss other pathways that are also involved in differentiation as well as proliferation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号