首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Our previous studies with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 (hereafter termed pgsA mutant), which is defective for the biosynthesis of phosphatidylglycerol (PG), revealed an important role for PG in the electron acceptor side of photosystem II (PSII), especially in the electron transport between plastoquinones Q(A) and Q(B). This study now shows that PG also plays an important role in the electron donor side of PSII, namely, the oxygen-evolving system. Analyses of purified PSII complexes indicated that PSII from PG-depleted pgsA mutant cells sustained only approximately 50% of the oxygen-evolving activity compared to wild-type cells. Dissociation of the extrinsic proteins PsbO, PsbV, and PsbU, which are required for stabilization of the manganese (Mn) cluster, followed by the release of a Mn atom, was observed in PSII of the PG-depleted mutant cells. The released PsbO rebound to PSII when PG was added back to the PG-depleted mutant cells, even when de novo protein synthesis was inhibited. Changes in photosynthetic activity of the PG-depleted pgsA mutant cells induced by heat treatment or dark incubation resembled those of DeltapsbO, DeltapsbV, and DeltapsbU mutant cells. These results suggest that PG plays an important role in binding extrinsic proteins required for sustaining a functional Mn cluster on the donor side of PSII.  相似文献   

2.
Conditions for preparing oxygen-evolving thylakoid membranes and PSII complexes, and those for observing the PSII activity were investigated in a glaucocystophyte, Cyanophora paradoxa. The active thylakoid membranes were isolated either with a medium containing glycerol or with that containing high concentrations of sucrose, phosphate, and citrate. Active PSII particles were solubilized by octyl-beta-D-glucoside from thylakoid membranes and were separated by sucrose density gradient centrifugation. The thylakoid membranes and PSII particles showed an oxygen-evolving activity only in high-ionic-strength media. The extrinsic 33 kDa protein (PsbO) and the cytochrome c(550) (PsbV) were found to be present in the PSII particles as in cyanobacteria or red algae, but no 12 kDa protein (PsbU) was detected. The PsbO protein was classified as a land-plant type by its N-terminal amino acid sequence.  相似文献   

3.
Carotene isomerase mutant (crtH mutant) cells of Synechocystis sp. PCC 6803 can accumulate beta-carotene under light conditions. However, the mutant cells grown under a light-activated heterotrophic growth condition contained detectable levels of neither beta-carotene nor D1 protein of the photosystem (PS) II reaction center, and no oxygen-evolving activity of PSII was detected. beta-Carotene and D1 protein appeared and a high level of PSII activity was detected after the cells were transferred to a continuous light condition. The PSI activities of thylakoid membranes from mutant cells were almost the same as those of thylakoid membranes from wild-type cells, both before and after transfer to the continuous light condition. These results suggest that beta-carotene is required for the assembly of PSII but not for that of PSI.  相似文献   

4.
PsbU is a lumenal peripheral protein in the photosystem II (PS II) complex of cyanobacteria and red algae. It is thought that PsbU is replaced functionally by PsbP or PsbQ in plant chloroplasts. After the discovery of PsbP and PsbQ homologues in cyanobacterial PS II [Thornton et al. (2004) Plant Cell 16, 2164-2175], we investigated the function of PsbU using a psbU deletion mutant (DeltaPsbU) of Synechocystis 6803. In contrast to the wild type, DeltaPsbU did not grow when both Ca2+ and Cl- were eliminated from the growth medium. When only Ca2+ was eliminated, DeltaPsbU grew well, whereas when Cl- was eliminated, the growth rate was highly suppressed. Although DeltaPsbU grew normally in the presence of both ions under moderate light, PS II-related disorders were observed as follows. (1) The mutant cells were highly susceptible to photoinhibition. (2) Both the efficiency of light utilization under low irradiance and the chlorophyll-specific maximum rate of oxygen evolution in DeltaPsbU cells were 60% lower than those of the wild type. (3) The decay of the S2 state in DeltaPsbU cells was decelerated. (4) In isolated PS II complexes from DeltaPsbU cells, the amounts of the other three lumenal extrinsic proteins and the electron donation rate were drastically decreased, indicating that the water oxidation system became significantly labile without PsbU. Furthermore, oxygen-evolving activity in DeltaPsbU thylakoid membranes was highly suppressed in the absence of Cl-, and 60% of the activity was restored by NO3- but not by SO4(2-), indicating that PsbU had functions other than stabilizing Cl-. On the basis of these results, we conclude that PsbU is crucial for the stable architecture of the water-splitting system to optimize the efficiency of the oxygen evolution process.  相似文献   

5.
The mechanism of oxygen evolution by photosystem II (PSII) has remained highly conserved during the course of evolution from ancestral cyanobacteria to green plants. A cluster of manganese, calcium, and chloride ions, whose binding environment is optimized by PSII extrinsic proteins, catalyzes this water-splitting reaction. The accepted view is that in plants and green algae, the three extrinsic proteins are PsbO, PsbP, and PsbQ, whereas in cyanobacteria, they are PsbO, PsbV, and PsbU. Our previous proteomic analysis established the presence of a PsbQ homolog in the cyanobacterium Synechocystis 6803. The current study additionally demonstrates the presence of a PsbP homolog in cyanobacterial PSII. Both psbP and psbQ inactivation mutants exhibited reduced photoautotrophic growth as well as decreased water oxidation activity under CaCl(2)-depleted conditions. Moreover, purified PSII complexes from each mutant had significantly reduced activity. In cyanobacteria, one PsbQ is present per PSII complex, whereas PsbP is significantly substoichiometric. These findings indicate that both PsbP and PsbQ proteins are regulators that are necessary for the biogenesis of optimally active PSII in Synechocystis 6803. The new picture emerging from these data is that five extrinsic PSII proteins, PsbO, PsbP, PsbQ, PsbU, and PsbV, are present in cyanobacteria, two of which, PsbU and PsbV, have been lost during the evolution of green plants.  相似文献   

6.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 micromol O(2)/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 micromol O(2)/mg Chl/h in the absence and presence of CaCl(2), respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

7.
Photosystem II (PSII) is a large membrane protein complex that uses light energy to convert water to molecular oxygen. This enzyme undergoes an intricate assembly process to ensure accurate and efficient positioning of its many components. It has been proposed that the Psb27 protein, a lumenal extrinsic subunit, serves as a PSII assembly factor. Using a psb27 genetic deletion strain (Deltapsb27) of the cyanobacterium Synechocystis sp. PCC 6803, we have defined the role of the Psb27 protein in PSII biogenesis. While the Psb27 protein was not essential for photosynthetic activity, various PSII assembly assays revealed that the Deltapsb27 mutant was defective in integration of the Mn(4)Ca(1)Cl(x) cluster, the catalytic core of the oxygen-evolving machinery within the PSII complex. The other lumenal extrinsic proteins (PsbO, PsbU, PsbV, and PsbQ) are key components of the fully assembled PSII complex and are important for the water oxidation reaction, but we propose that the Psb27 protein has a distinct function separate from these subunits. We show that the Psb27 protein facilitates Mn(4)Ca(1)Cl(x) cluster assembly in PSII at least in part by preventing the premature association of the other extrinsic proteins. Thus, we propose an exchange of lumenal subunits and cofactors during PSII assembly, in that the Psb27 protein is replaced by the other extrinsic proteins upon assembly of the Mn(4)Ca(1)Cl(x) cluster. Furthermore, we show that the Psb27 protein provides a selective advantage for cyanobacterial cells under conditions such as nutrient deprivation where Mn(4)Ca(1)Cl(x) cluster assembly efficiency is critical for survival.  相似文献   

8.
Photosystem II (PSII) is a large membrane protein complex that catalyzes oxidation of water to molecular oxygen. During its normal function, PSII is damaged and frequently turned over. The maturation of the D1 protein, a key component in PSII, is a critical step in PSII biogenesis. The precursor form of D1 (pD1) contains a C-terminal extension, which is removed by the protease CtpA to yield PSII complexes with oxygen evolution activity. To determine the temporal position of D1 processing in the PSII assembly pathway, PSII complexes containing only pD1 were isolated from a CtpA-deficient strain of the cyanobacterium Synechocystis 6803. Although membranes from the mutant cell had nearly 50% manganese, no manganese was detected in isolated DeltactpAHT3 PSII, indicating a severely decreased manganese affinity. However, chlorophyll fluorescence decay kinetics after a single saturating flash suggested that the donor Y(Z) was accessible to exogenous Mn(2+) ions. Furthermore, the extrinsic proteins PsbO, PsbU, and PsbV were not present in PSII isolated from this mutant. However, PsbO and PsbV were present in mutant membranes, but the amount of PsbV protein was consistently less in the mutant membranes compared with the control membranes. We conclude that D1 processing precedes manganese binding and assembly of the extrinsic proteins into PSII. Interestingly, the Psb27 protein was found to be more abundant in DeltactpAHT3 PSII than in HT3 PSII, suggesting a possible role of Psb27 as an assembly factor during PSII biogenesis.  相似文献   

9.
The oxygen-evolving machinery of photosystem II in cyanobacteria is associated with three extrinsic proteins: the manganese-stabilizing protein, cytochrome c(550), and PsbU. To elucidate the effect of the presence of these extrinsic proteins on the stabilization of the oxygen-evolving machinery against high-temperature stress, we inactivated the genes for these proteins individually in Synechocystis sp. PCC 6803 by targeted mutagenesis. The thermal stability of the oxygen-evolving machinery decreased in all mutated cells but the extent of the susceptibility to heat inactivation varied between the photosystems lacking the different extrinsic proteins. Cells that lacked either the manganese-stabilizing protein or cytochrome c(550) were unable to enhance the thermal stability of the oxygen-evolving machinery and, moreover, failed to increase cellular thermotolerance when grown at moderately high temperatures. Our findings indicate that the three extrinsic proteins stabilize the oxygen-evolving machinery independently against high-temperature stress and that the thermal stability of the machinery influences cellular thermotolerance.  相似文献   

10.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 μmol O2/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 μmol O2/mg Chl/h in the absence and presence of CaCl2, respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

11.
Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity.  相似文献   

12.
Y Nishiyama  D A Los  H Hayashi    N Murata 《Plant physiology》1997,115(4):1473-1480
The evolution of oxygen is the reaction that is the most susceptible to heat in photosynthesis. We showed previously that, in the cyanobacterium Synechococcus sp. PCC 7002, some protein factors located on the thylakoid membranes are involved in the stabilization of this reaction against heat-induced inactivation, and we identified cytochrome C550 as one such factor (Y. Nishiyama, H. Hayashi, T. Watanabe, N. Murata [1994] Plant Physiol 105: 1313-1319). In the present study we purified another protein that appears to be essential for the stabilization of the oxygen-evolving machinery. The purified protein had an apparent molecular mass of 13 kD, and the gene encoding the 13-kD protein was cloned from Synechococcus sp. PCC 7002 and sequenced. The deduced amino acid sequence revealed that the protein was homologous to PsbU, an extrinsic protein of the photosystem II complex, which has been found in thermophilic species of cyanobacteria. Western analysis showed that the level of PsbU in thylakoid membranes was constant, regardless of the growth temperature. Our studies indicate that PsbU, a constituent of the photosystem II complex, protects the oxygen-evolving machinery against heat-induced inactivation.  相似文献   

13.
H Hrtel  H Lokstein  P Drmann  B Grimm    C Benning 《Plant physiology》1997,115(3):1175-1184
The glycerolipid digalactosyl diacylglycerol (DGDG) is exclusively associated with photosynthetic membranes and thus may play a role in the proper assembly and maintenance of the photosynthetic apparatus. Here we employ a genetic approach based on the dgd1 mutant of Arabidopsis thaliana to investigate the function of DGDG in thylakoid membranes. The primary defect in the genetically well-characterized dgd1 mutant resulted in a 90% reduction of the DGDG content. The mutant showed a decreased photosystem II (PSII) to photosystem I ratio. In vivo room- and low-temperature (77 K) chlorophyll fluorescence measurements with thylakoid preparations are in agreement with a drastically altered excitation energy allocation to the reaction centers. Quantification of pigment-binding apoproteins and pigments supports an altered stoichiometry of individual pigment-protein complexes in the mutant. Most strikingly, an increase in the amount of peripheral light-harvesting complexes of PSII relative to the inner antenna complexes and the PSII reaction center/core complexes was observed. Regardless of the severe alterations in thylakoid organization, photosynthetic oxygen evolution was virtually not compromised in dgd1 mutant leaves.  相似文献   

14.
Digalactosyldiacylglycerol (DGDG) is a typical membrane lipid of oxygenic photosynthetic organisms. Although DGDG synthase genes have been isolated from plants, no homologous gene has been annotated in the genomes of cyanobacteria and the unicellular red alga Cyanidioschyzon merolae. Here we used a comparative genomics approach and identified a non-plant-type DGDG synthase gene (designated dgdA) in Synechocystis sp. PCC6803. The enzyme produced DGDG in Escherichia coli when co-expressed with a cucumber monogalactosyldiacylglycerol synthase. A DeltadgdA knock-out mutant showed no obvious phenotype other than loss of DGDG when grown in a BG11 medium, indicating that DGDG is dispensable under optimal conditions. However, the mutant showed reduced growth under phosphate-limited conditions, suggesting that DGDG may be required under phosphate-limited conditions, such as those in natural niches of cyanobacteria.  相似文献   

15.
Distribution of photosystem II (PSII) extrinsic proteins was examined using antibodies raised against various extrinsic proteins from different sources. The results showed that a glaucophyte (Cyanophora paradoxa) having the most primitive plastids contained the cyanobacterial-type extrinsic proteins (PsbO, PsbV, PsbU), and the primitive red algae (Cyanidium caldarium) contained the red algal-type extrinsic proteins (PsO, PsbQ', PsbV, PsbU), whereas a prasinophyte (Pyraminonas parkeae), which is one of the most primitive green algae, contained the green algal-type ones (PsbO, PsbP, PsbQ). These suggest that the extrinsic proteins had been diverged into cyanobacterial-, red algal- and green algal-types during early phases of evolution after a primary endosymbiosis. This study also showed that a haptophyte, diatoms and brown algae, which resulted from red algal secondary endosymbiosis, contained the red algal-type, whereas Euglena gracilis resulted from green algal secondary endosymbiosis contained the green algal-type extrinsic proteins, suggesting that the red algal- and green algal-type extrinsic proteins have been retained unchanged in the different lines of organisms following the secondary endosymbiosis. Based on these immunological analyses, together with the current genome data, the evolution of photosynthetic oxygen-evolving PSII was discussed from a view of distribution of the extrinsic proteins, and a new model for the evolution of the PSII extrinsic proteins was proposed.  相似文献   

16.
Meetam M  Keren N  Ohad I  Pakrasi HB 《Plant physiology》1999,121(4):1267-1272
A tetra-manganese cluster in the photosystem II (PSII) pigment-protein complex plays a critical role in the photosynthetic oxygen evolution process. PsbY, a small membrane-spanning polypeptide, has recently been suggested to provide a ligand for manganese in PSII (A.E. Gau, H.H. Thole, A. Sokolenko, L. Altschmied, R.G. Herrmann, E.K. Pistorius [1998] Mol Gen Genet 260: 56-68). We have constructed a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with an inactivated psbY gene (sml0007). Southern-blot and polymerase chain reaction analysis showed that the mutant had completely segregated. However, the DeltapsbY mutant cells grew normally under photoautotrophic conditions. Moreover, growth of the wild-type and mutant cells were similar under high-light photoinhibition conditions, as well as in media without any added manganese, calcium, or chloride, three required inorganic cofactors for the oxygen-evolving complex of PSII. Analysis of steady-state and flash-induced oxygen evolution, fluorescence induction, and decay kinetics, and thermoluminescence profiles demonstrated that the DeltapsbY mutant cells have normal photosynthetic activities. We conclude that the PsbY protein in Synechocystis 6803 is not essential for oxygenic photosynthesis and does not provide an important binding site for manganese in the oxygen-evolving complex of PSII.  相似文献   

17.
Under strong light, photosystem II (PSII) of oxygenic photosynthetic organisms is inactivated, and this phenomenon is called photoinhibition. In a widely accepted model, photoinhibition is induced by excess light energy, which is absorbed by chlorophyll but not utilized in photosynthesis. Using monochromatic light from the Okazaki Large Spectrograph and thylakoid membranes from Thermosynechococcus elongatus, we observed that UV and blue light inactivated the oxygen-evolving complex much faster than the photochemical reaction center of PSII. These observations suggested that the light-induced damage was associated with a UV- and blue light-absorbing center in the oxygen-evolving complex of PSII. The action spectrum of the primary event in photodamage to PSII revealed the strong effects of UV and blue light and differed considerably from the absorption spectra of chlorophyll and thylakoid membranes. By contrast to the photoinduced inactivation of the oxygen-evolving complex in untreated thylakoid membranes, red light efficiently induced inactivation of the PSII reaction center in Tris-treated thylakoid membranes, and the action spectrum resembled the absorption spectrum of chlorophyll. Our observations suggest that photodamage to PSII occurs in two steps. Step 1 is the light-induced inactivation of the oxygen-evolving complex. Step 2, occurring after step 1 is complete, is the inactivation of the PSII reaction center by light absorbed by chlorophyll. We confirmed our model by illumination of untreated thylakoid membranes with blue and UV light, which inactivated the oxygen-evolving complex, and then with red light, which inactivated the photochemical reaction center.  相似文献   

18.
Previously we observed that the oxygen-evolving complex 33 kDa protein (OEC33) which stabilizes the Mn cluster in photosystem II (PSII), was modified with malondialdehyde (MDA), an end-product of peroxidized polyunsaturated fatty acids, and the modification increased in heat-stressed plants (Yamauchi et al. 2008). In this study, we examined whether the modification of OEC33 with MDA affects its binding to the PSII complex and causes inactivation of the oxygen-evolving complex. Purified OEC33 and PSII membranes that had been removed of extrinsic proteins of the oxygen-evolving complex (PSII∆OEE) of spinach (Spinacia oleracea) were separately treated with MDA. The binding was diminished when both OEC33 and PSII∆OEE were modified, but when only OEC33 or PSII∆OEE was treated, the binding was not impaired. In the experiment using thylakoid membranes, release of OEC33 from PSII and corresponding loss of oxygen-evolving activity were observed when thylakoid membranes were treated with MDA at 40°C but not at 25°C. In spinach leaves treated at 40°C under light, maximal efficiency of PSII photochemistry (F v/F m ratio of chlorophyll fluorescence) and oxygen-evolving activity decreased. Simultaneously, MDA contents in heat-stressed leaves increased, and OEC33 and PSII core proteins including 47 and 43 kDa chlorophyll-binding proteins were modified with MDA. In contrast, these changes were to a lesser extent at 40°C in the dark. These results suggest that MDA modification of PSII proteins causes release of OEC33 from PSII and it is promoted in heat and oxidative conditions.  相似文献   

19.
This minireview presents a summary of information available on the variety and binding properties of extrinsic proteins that form the oxygen-evolving complex of photosystem II (PSII) of cyanobacteria, red alga, diatom, green alga, euglena, and higher plants. In addition, the structure and function of extrinsic PsbO, PsbV, and PsbU proteins are summarized based on the crystal structure of thermophilic cyanobacterial PSII together with biochemical and genetic studies from various organisms.  相似文献   

20.
The structure of photosystem II (PSII) complex isolated from thylakoid membranes of the red alga Porphyridium cruentum was investigated using electron microscopy followed by single particle image analysis. The dimeric complexes observed contain all major PSII subunits (CP47, CP43, D1 and D2 proteins) as well as the extrinsic proteins (33 kDa, 12 kDa and the cytochrome c(550)) of the oxygen-evolving complex (OEC) of PSII, encoded by the psbO, psbU and psbV genes, respectively. The single particle analysis of the top-view projections revealed the PSII complex to have maximal dimensions of 22 x 15 nm. The analysis of the side-view projections shows a maximal thickness of the PSII complex of about 9 nm including the densities on the lumenal surface that has been attributed to the proteins of the OEC complex. These results clearly demonstrate that the red algal PSII complex is structurally very similar to that of cyanobacteria and to the PSII core complex of higher plants. In addition, the arrangement of the OEC proteins on the lumenal surface of the PSII complex is consistent to that obtained by X-ray crystallography of cyanobacterial PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号