首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng X  Saunders WS 《Genetics》2000,155(2):577-587
Meiotic cell division includes two separate and distinct types of chromosome segregation. In the first segregational event the sister chromatids remain attached at the centromere; in the second the chromatids are separated. The factors that control the order of chromosome segregation during meiosis have not yet been identified but are thought to be confined to the centromere region. We showed that the centromere protein Slk19p is required for the proper execution of meiosis in Saccharomyces cerevisiae. In its absence diploid cells skip meiosis I and execute meiosis II division. Inhibiting recombination does not correct this phenotype. Surprisingly, the initiation of recombination is apparently required for meiosis II division. Thus Slk19p appears to be part of the mechanism by which the centromere controls the order of meiotic divisions.  相似文献   

2.
Fu S  Gao Z  Birchler J  Han F 《遗传学报》2012,39(3):125-130
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.  相似文献   

3.
The centromere is an essential chromosomal structure that is required for the faithful distribution of replicated chromosomes to daughter cells. Defects in the centromere can compromise the stability of chromosomes resulting in segregation errors. We have characterised the centromeric structure of the spontaneous mutant mouse strain, BALB/cWt, which exhibits a high rate of Y chromosome instability. The Y centromere DNA array shows a de novo interstitial deletion and a reduction in the level of the foundation centromere protein, CENP-A, when compared to the non-deleted centromere array in the progenitor strain. These results suggest there is a lower threshold limit of centromere size that ensures full kinetochore function during cell division.  相似文献   

4.
Meiosis is a specialized eukaryotic cell division, in which diploid cells undergo a single round of DNA replication and two rounds of nuclear division to produce haploid gametes. In most eukaryotes, the core events of meiotic prophase I are chromosomal pairing,synapsis and recombination. To ensure accurate chromosomal segregation, homologs have to identify and align along each other at the onset of meiosis. Although much progress has been made in elucidating meiotic processes, information on the mechanisms underlying chromosome pairing is limited in contrast to the meiotic recombination and synapsis events. Recent research in many organisms indicated that centromere interactions during early meiotic prophase facilitate homologous chromosome pairing, and functional centromere is a prerequisite for centromere pairing such as in maize. Here, we summarize the recent achievements of chromosome pairing research on plants and other organisms, and outline centromere interactions, nuclear chromosome orientation,and meiotic cohesin, as main determinants of chromosome pairing in early meiotic prophase.  相似文献   

5.
The centromere is the locus that directs chromosomal inheritance at cell division. While centromeres in diverse eukaryotes are commonly found at sites of repetitive DNA, their location is epigenetically specified. The histone H3 variant CENP-A is the prime candidate for epigenetically marking the centromere, and recent work has uncovered several additional proteins that play key roles in centromere assembly and maintenance. We describe advances in the identification and characterization of proteins that form the centromere, and focus on recent findings that have advanced our understanding of the assembly of functional centromeric chromatin. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.  相似文献   

6.
Centromeres are special structures of eukaryotic chromosomes that hold sister chromatid together and ensure proper chromosome segregation during cell division. Centromeres consist of repeated sequences, which have hindered the study of centromere mitotic recombination and its consequences for centromeric function. We use a chromosome orientation fluorescence in situ hybridization technique to visualize and quantify recombination events at mouse centromeres. We show that centromere mitotic recombination occurs in normal cells to a higher frequency than telomere recombination and to a much higher frequency than chromosome-arm recombination. Furthermore, we show that centromere mitotic recombination is increased in cells lacking the Dnmt3a and Dnmt3b DNA methyltransferases, suggesting that the epigenetic state of centromeric heterochromatin controls recombination events at these regions. Increased centromere recombination in Dnmt3a,3b-deficient cells is accompanied by changes in the length of centromere repeats, suggesting that prevention of illicit centromere recombination is important to maintain centromere integrity in the mouse.  相似文献   

7.
K Méhes 《Human heredity》1978,28(4):255-260
Early centromere separation was investigated in 12 normal children, 14 patients with Down's syndrome and in 12 patients of children with autosomal trisomies. A significantly non-random centromere division of chromosomes was found in each of the cases. A higher frequency of early separated G chromosomes was observed in Down's syndrome. In 2 mothers of trisomy-18 patients, the early division of chromosomes 18, generally seen in normal individuals, could not be demonstrated. The possible assoication between altered sequence of centromere disision and non-disjunction needs further confirmation.  相似文献   

8.
The linear chromosomes of eukaryotes contain specialized structures to ensure their faithful replication and segregation to daughter cells. Two of these structures, centromeres and telomeres, are limited, respectively, to one and two copies per chromosome. It is possible that the proteins that interact with centromere and telomere DNA sequences are present in limiting amounts and could be competed away from the chromosomal copies of these elements by additional copies introduced on plasmids. We have introduced excess centromeres and telomeres into Saccharomyces cerevisiae and quantitated their effects on the rates of loss of chromosome III and chromosome VII by fluctuation analysis. We show that (i) 600 new telomeres have no effect on chromosome loss; (ii) an average of 25 extra centromere DNA sequences increase the rate of chromosome III loss from 0.4 x 10(-4) events per cell division to 1.3 x 10(-3) events per cell division; (iii) centromere DNA (CEN) sequences on circular vectors destabilize chromosomes more effectively than do CEN sequences on 15-kb linear vectors, and transcribed CEN sequences have no effect on chromosome stability. We discuss the different effects of extra centromere and telomere DNA sequences on chromosome stability in terms of how the cell recognizes these two chromosomal structures.  相似文献   

9.
Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling   总被引:68,自引:0,他引:68  
Cleveland DW  Mao Y  Sullivan KF 《Cell》2003,112(4):407-421
The centromere is a chromosomal locus that ensures delivery of one copy of each chromosome to each daughter at cell division. Efforts to understand the nature and specification of the centromere have demonstrated that this central element for ensuring inheritance is itself epigenetically determined. The kinetochore, the protein complex assembled at each centromere, serves as the attachment site for spindle microtubules and the site at which motors generate forces to power chromosome movement. Unattached kinetochores are also the signal generators for the mitotic checkpoint, which arrests mitosis until all kinetochores have correctly attached to spindle microtubules, thereby representing the major cell cycle control mechanism protecting against loss of a chromosome (aneuploidy).  相似文献   

10.
The structure of the mammalian centromere   总被引:14,自引:0,他引:14  
The mammalian centromere is a multifunctional chromosomal domain with a complexity that is reflected in its higher order structure, DNA sequence organization and protein composition. The centromere plays a major role during cell division where it functions as the site for the integration of the chromosome with the mitotic spindle, the site of the mechanochemical motor responsible for the movement of chromosomes and the major and last point of interaction between sister chromatids. Recent studies have focused on characterizing the components of the centromere and establishing their relationship to its function. The following brief review summarizes some selected aspects of this recent work.  相似文献   

11.
The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis. These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1 and CENP-E.  相似文献   

12.
Jules O''Rear  Jasper Rine 《Genetics》1986,113(3):517-529
In Saccharomyces cerevisiae, a reciprocal translocation between chromosome II and a linear plasmid carrying a centromere (CEN6) has split chromosome II into two fragments: one, approximately 530 kilobase pairs (kbp) in size, has the left arm and part of the right arm of chromosome II; the other, a telocentric fragment approximately 350 kbp in size, has CEN6 and the rest of the right arm of chromosome II. A cross of this yeast strain with a strain containing a complete chromosome II exhibits a high frequency of precocious centromere separation (separation of sister chromatids during meiosis I) of the telocentric fragment. Precocious centromere separation is not due to the position of the centromere per se, since diploids that are homozygous for both fragments of chromosome II segregate the telocentric fragment with normal meiotic behavior. The precocious centromere separation described here differs from previously described examples in that pairing and synapsis of this telocentric chromosome seem to be normal. One model of how centromeres function in meiosis is that replication of the centromere is delayed until the second meiotic division. Data presented in this paper indicate that replication of the centromere is complete before the first meiotic division. The precocious separation of the centromere described here may be due to improper synapsis of sequences flanking the centromere.  相似文献   

13.
The centromere is a highly organized structure mainly composed of repeat sequences, which make this region extremely difficult for sequencing and other analyses. It plays a conserved role in equal division of chromosomes into daughter cells in both mitosis and meiosis. However, centromere sequences show notable plasticity. In a dicentric chromosome, one of the centromeres can become inactivated with the underlying DNA unchanged. Furthermore, formerly inactive centromeres can regain activity under certain conditions. In addition, neocentromeres without centromeric repeats have been found in a wide spectrum of species. This evidence indicates that epigenetic mechanisms together with centromeric sequences are associated with centromere specification.  相似文献   

14.
Centromeres direct faithful chromosome inheritance at cell division but are not defined by a conserved DNA sequence. Instead, a specialized form of chromatin containing the histone H3 variant, CENP-A, epigenetically specifies centromere location. We discuss current models where CENP-A serves as the marker for the centromere during the entire cell cycle in addition to generating the foundational chromatin for the kinetochore in mitosis. Recent elegant experiments have indicated that engineered arrays of CENP-A-containing nucleosomes are sufficient to serve as the site of kinetochore formation and for seeding centromeric chromatin that self-propagates through cell generations. Finally, recent structural and dynamic studies of CENP-A-containing histone complexes - before and after assembly into nucleosomes - provide models to explain underlying molecular mechanisms at the centromere.  相似文献   

15.
As the spindle fiber attachment region of the chromosome, the centromere has been investigated in a variety of contexts. Here, we will review current knowledge about this unique chromosomal region and its relevance for proper cell division, speciation, and disease. Understanding the three-dimensional organization of centromeres in normal and tumor cells is just beginning to emerge. Multidisciplinary research will allow for new insights into its normal and aberrant nuclear organization and may allow for new therapeutic interventions that target events linked to centromere function and cell division.  相似文献   

16.
Kinetochores and chromatid cores of meiotic chromosomes of the grasshopper species Arcyptera fusca and Eyprepocnemis plorans were differentially silver stained to analyse the possible involvement of both structures in chromatid cohesiveness and meiotic chromosome segregation. Special attention was paid to the behaviour of these structures in the univalent sex chromosome, and in B univalents with different orientations during the first meiotic division. It was observed that while sister chromatid of univalents are associated at metaphase I, chromatid cores are individualised independently of their orientation. We think that cohesive proteins on the inner surface of sister chromatids, and not the chromatid cores, are involved in the chromatid cohesiveness that maintains associated sister chromatids of bivalents and univalents until anaphase I. At anaphase I sister chromatids of amphitelically oriented B univalents or spontaneous autosomal univalents separate but do not reach the poles because they remain connected at the centromere by a long strand which can be visualized by silver staining, that joins stretched sister kinetochores. This strand is normally observed between sister kinetochores of half-bivalents at metaphase II and early anaphase II. We suggest that certain centromere proteins that form the silver-stainable strand assure chromosome integrity until metaphase II. These cohesive centromere proteins would be released or modified during anaphase II to allow normal chromatid segregation. Failure of this process during the first meiotic division could lead to the lagging of amphitelically oriented univalents. Based on our results we propose a model of meiotic chromosome segregation. During mitosis the cohesive proteins located at the centromere and chromosome arms are released during the same cellular division. During meiosis those proteins must be sequentially inactivated, i.e. those situated on the inner surface of the chromatids must be eliminated during the first meiotic division while those located at the centromere must be released during the second meiotic division.by D.P. Bazett-Jones  相似文献   

17.
The centromere is a genetic locus, required for faithful chromosome segregation, where spindle fibers attach to the chromosome through kinetochore. Loss of centromere or formation of multiple centromeres on a single chromosome leads to chromosome missegregation or chromosome breakage, respectively, which are detrimental for fitness and survival of a cell. Therefore, understanding the mechanism of centromere locus determination on the chromosome and perpetuation of such a locus in subsequent generation (known as centromere identity) is very fundamental to combat conditions like aneuploidy, spontaneous abortion, developmental defects, cell lethality and cancer. Recent studies have come up with different models to explain centromere identity. However, the exact mechanism still remains elusive. It has been observed that most eukaryotic centromeres are determined epigenetically rather than by a DNA sequence. The epigenetic marks that are instrumental in determining centromere identity are the histone H3 variant, CENP-A and the specialized posttranslational modification of the core histones. Here we will review the recent studies on the factors responsible for generating unique centromeric chromatin and how it perpetuates during cell division giving the present-day models. We will further focus on the probable mechanism of de novo centromere formation with an example of neocentromere. As a matter of similitude, this review will include marking extrachromosomal chromatin to be served as a partitioning locus by deposition of CENP-A homolog in budding yeast.  相似文献   

18.
Summary We describe a family with an increased frequency of cells with premature centromere division (PCD) of all chromosomes in four phenotypically normal individuals. This familial PCD phenomenon is apparently different from the well-described PCD of the X chromosome and from the centromere splitting in cells of patients with Roberts syndrome. Implications for genetic counseling are discussed.  相似文献   

19.
The spindle checkpoint control mechanism functions to ensure faithful chromosome segregation by delaying cell division until all chromosomes are correctly oriented on the mitotic spindle. Initially identified in budding yeast, several mammalian spindle checkpoint-associated proteins have recently been identified and partially characterized. These proteins associate with all active human centromeres, including neocentromeres, in the early stages of mitosis prior to the commencement of anaphase. We have examined the status of proteins associated with the checkpoint protein complex (BUB1, BUBR1, BUB3, MAD2), the anaphase-promoting complex (Tsg24, p55CDC), and other proteins associated with mitotic checkpoint control (ERK1, 3F3/2 epitope, hZW10), on a human dicentric chromosome. Each of these proteins was found to specifically associate with only the active centromere, suggesting that only active centromeres participate in the spindle checkpoint. This finding complements previous studies on multicentric chromosomes demonstrating specific association of structural and motor-related centromere proteins with active centromeres, and suggests that centromere inactivation is accompanied by loss of all functionally important centromere proteins.  相似文献   

20.
Centromere protein CENP-A is a histone H3-like protein associated specifically with the centromere and represents one of the human autoantigens identified by sera taken from patients with the CREST variant of progressive systemic sclerosis. Injection of whole human autoimmune serum to the centromere into interphase cells disrupts some mitotic events. It has been assumed that this effect is due to CENP-E and CENP-C autoantigens, because of the effects of injecting monospecific sera to those proteins into culture cells. Here we have used an antibody raised against an N-terminal peptide of the human autoantigen CENP-A to determine its function in mitosis and during cell cycle progression. Affinity-purified anti-CENP-A antibodies injected into the nucleus during the early replication stages of the cell cycle caused cells to arrest in interphase before mitosis. These cells showed highly condensed small nuclei, a granular cytoplasm and loss of their division capability. On the other hand, microinjection of nocodazole-blocked HeLa cells in mitosis resulted in the typical punctate staining pattern of CENP-A for centromeres during different stages of mitosis and apparently normal cell division. This was corroborated by time-lapse imaging microscopy analysis of mid-interphase-injected cells, revealing that they undergo mitosis and divide properly. However, a significant delay throughout the progression of mitotic stages was observed. These results suggest that CENP-A is involved predominantly in an essential interphase event at the centromere before mitosis. This may include chromatin assembly at the kinetochore coordinate with late replication of satellite DNA to form an active centromere. Received: 3 August 1998 / Accepted: 18 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号