首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We examined pyrethroid resistant Mexican strains of Boophilus microplus using biochemical and molecular tests to determine the mechanisms conferring resistance. Permethrin hydrolysis assays and esterase activity gels indicated enhanced esterase-mediated metabolic detoxification in the Cz strain, while one other pyrethroid resistant strain, SF, and two pyrethroid susceptible strains had lower levels of permethrin hydrolysis. Results from assays using a PCR-based test to detect a pyrethroid target site resistance-associated mutation in the tick sodium channel gene found only low levels of mutations in the Cz strain, while the SF strain had a high level of the mutated sodium channel alleles. A specific esterase, designated CzEst9, believed to be responsible for the esterase-mediated pyrethroid resistance in the Cz strain was purified, and the gene encoding CzEst9 cloned. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
4.
Organophosphate-resistant and -susceptible strains of Culex quinquefasciatus (mosquito) have been compared on the basis of their esterase activities. The homozygous resistant strain (Dar) shows two highly active esterases after starch-gel electrophoresis, of Rm 0.2 and 0.4, which are absent from susceptible strains (Apo, Mon), and which previous selection studies have shown to be inseparable from organophosphate resistance. After SDS/polyacrylamide-gel electrophoresis and silver staining of total C. quinquefasciatus proteins, a 62 kDa band is observed in strain Dar at high concentrations, and in susceptible strains in trace amounts. After Western blotting, this 62 kDa protein is recognized by antisera raised against the two esterases eluted from starch gels. After chromatofocusing of Dar proteins, the 62 kDa protein is seen to be associated with esterase activity, and of a similar pI to that observed for esterases after isoelectric focusing. Post-translational modification is not required for recognition of the 62 kDa putative esterase, since the protein is immunoprecipitated by the anti-esterase serum from products of translation of Dar mRNA in vitro.  相似文献   

5.
Extensive use of insecticides on cotton in the mid-South has prompted resistance development in the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). A field population of tarnished plant bugs in Mississippi with 11-fold higher resistance to malathion was used to examine how gene regulation conferred resistance to this organophosphate insecticide. In laboratory bioassays, synergism by the esterase inhibitors S,S,S,-tributylphosphorotrithioate (DEF) and triphenylphosphate (TPP) effectively abolished resistance and increased malathion toxicity by more than 80%. Esterase activities were compared in vitro between malathion susceptible and resistant (selected) strains. More than 6-, 3- and 10-fold higher activities were obtained with the resistant strain using alpha-naphthyl acetate, beta-naphthyl acetate, and p-nitrophenyl acetate, respectively. Up to 95% and 89% of the esterase activity in the susceptible and resistant strains, respectively, was inhibited by 1 mM DEF. Inhibition of esterase activity up to 75% and 85% in the susceptible and resistant strains, respectively, was obtained with 0.03 mM TPP. Esterase activities in field populations increased by up to 5.4-fold during the fall season. The increase was synchronized with movement of the insect into cotton where exposure to pesticides occurred. Esterase cDNA was cloned and sequenced from both malathion susceptible and resistant strains. The 1818-nucleotide cDNA contained a 1710-bp open reading frame coding a 570 amino acid protein which was similar to many insect esterases conferring organophosphate resistance. No amino acid substitution was observed between susceptible and resistant strains, indicating that esterase gene mutation was not involved in resistance development in the resistant strain in Mississippi. Further examination of esterase gene expression levels using quantitative RT-PCR revealed that the resistant strain had a 5.1-fold higher level of esterase mRNA than the susceptible strain. The results of this study indicated that up-regulation of the esterase gene appeared to be related to the development of resistance in the tarnished plant bug.  相似文献   

6.
The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F3 advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F3 adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure.  相似文献   

7.
解毒酯酶在小菜蛾幼虫抗药性中的作用   总被引:29,自引:4,他引:29  
  相似文献   

8.
家蝇对拟除虫菊酯农药的抗性机制   总被引:15,自引:8,他引:15  
孙耘芹  袁家圭 《昆虫学报》1990,33(3):265-273
本文对二氯苯醚菊酯和溴氰菊酯分别选择的高抗性家蝇(Musca domestica vicina)品系2Cl-R及Dec-R的抗性机制进行了研究.应用生物测定、增效剂,体内试验的表皮穿透作用、离体条件的解毒酶系活性的增加以及家蝇头部ATP酶活力的研究结果表明,两种拟除虫菊酯高抗性家蝇品系的表皮穿透性均比正常品系NP为慢,特别是Dec-R品系极慢.酯酶和多功能氧化酶及其末端的细胞色素P-450的活性在两个抗性品系中都比NP品系有不同程度的增高,但2Cl-R品系以氧化酶为主,而Dec-R品系似以酯酶占优势.Dec-R品系的Na+—K+-ATP酶活力低于NP品系的46%,而2Cl-R品系与NP品系相等.Mg2+-ATP酶活性在两个抗性品系中均高于正常品系.Mg2+-ATP酶可能也是拟除虫菊酯的一个重要靶标部位.  相似文献   

9.
Amplification of the esterase B1 gene of Culex quinquefasciatus Say results in high titers of an esterase enzyme that confers resistance to organophosphate insecticides. Esterase activity of individuals was measured in samples from an organophosphate resistant strain (Tem-R), a susceptible strain (S-Lb), and their reciprocal F1 progeny. Within-strain variation, as measured by coefficients of variation, was fairly consistent between sexes within strains and among strains (average, 12%). On average, individuals from the Tem-R strain had about 120 times the esterase activity of individuals from the S-Lab strain. The mean esterase activities of the F1 strains were significantly higher than the average of the Tem-R and S-Lab strain mean esterase activities, suggesting enhanced expression of the amplified esterase B1 genes in F1 individuals. Reciprocal F1 strains did not differ significantly in esterase activity or resistance, indicating that maternal effects do not influence either of these measures in these strains. The levels of esterase activity of the strains are discussed in relation to their resistance.  相似文献   

10.
Rhipicephalus sanguineus (Latreille) (Ixodida: Ixodidae) is a three‐host dog tick found worldwide that is able to complete its' entire lifecycle indoors. Options for the management of R. sanguineus are limited and its' control relies largely on only a few acaricidal active ingredients. Previous studies have confirmed permethrin resistance and fipronil tolerance in R. sanguineus populations, commonly conferred by metabolic detoxification or target site mutations. Herein, five strains of permethrin‐resistant and three strains of fipronil‐tolerant ticks were evaluated for metabolic resistance using synergists to block metabolic enzymes. Synergist studies were completed with triphenyl phosphate (TPP) for esterase inhibition, piperonyl butoxide (PBO) for cytochrome P450 inhibition, and diethyl maleate (DEM) for glutathione‐S‐transferase inhibition. Additionally, increased esterase activity was confirmed using gel electrophoresis. The most important metabolic detoxification mechanism in permethrin‐resistant ticks was increased esterase activity, followed by increased cytochrome P450 activity. The inhibition of metabolic enzymes did not have a marked impact on fipronil‐tolerant tick strains.  相似文献   

11.
Two esterase cDNA sequences were obtained from susceptible and organophosphorus resistant strains of Boophilus microplus. Both sequences have a high degree of homology to carboxylesterase B. One gene has identical sequences in both strains and the other showed two point mutations. One mutation produces an amino acid substitution when the amino acid sequence is deduced, this mutation was detected in six different populations susceptible and resistant to insecticides, but a pyrethroid resistant strain was the only one that showed only the mutant allele. Identification of this mutation and the strong signal detected in southern blot with this strain, suggest that esterases are contributing to detoxification of pyrethroid compounds, as a resistant mechanism in Mexican strains of the southern cattle tick.  相似文献   

12.
The new gene prbA encodes an esterase responsible for the hydrolysis of the ester bond of parabens in Enterobacter cloacae strain EM. This gene is located on the chromosome of strain EM and was cloned by several PCR approaches. The prbA gene codes for an immature protein of 533 amino acids, the first 31 of which represent a proposed signal peptide yielding a mature protein of a putative molecular mass of 54.6 kDa. This enzyme presents analogies with other type B carboxylesterases, mainly of eukaryotic origin. The cloning and expression of the prbA gene in a strain of Escherichia coli previously unable to hydrolyze parabens resulted in the acquisition of a hydrolytic capacity comparable to the original activity of strain EM, along with an increased resistance of the transformed strain to methyl paraben. The presence of homologues of prbA was tested in additional ubiquitous bacteria, which may be causative factors in opportunistic infections, including Enterobacter gergoviae, Enterobacter aerogenes, Pseudomonas agglomerans, E. coli, Pseudomonas aeruginosa, and Burkholderia cepacia. Among the 41 total strains tested, 2 strains of E. gergoviae and 1 strain of Burkholderia cepacia were able to degrade almost completely 800 mg of methyl paraben liter(-1). Two strains of E. gergoviae, named G1 and G12, contained a gene that showed high homology to the prbA gene of E. cloacae and demonstrated comparable paraben esterase activities. The significant geographical distance between the locations of the isolated E. cloacae and E. gergoviae strains suggests the possibility of an efficient transfer mechanism of the prbA gene, conferring additional resistance to parabens in ubiquitous bacteria that represent a common source of opportunistic infections.  相似文献   

13.
水解代谢在家蝇对二氯苯醚菊酯抗性中起重要作用。正常家蝇和抗性家蝇酯酶在对SV1、SV2等抑制剂的敏感性和电泳性质上存在着差异。抗性家蝇酯酶水解二氯苯醚菊酯的活性较高,水解乙酸-α-萘酯的活性相对比正常家蝇要低。SV1及其在体内的代谢产物SV2在离体和活体情况下对家蝇酯酶都有明显的抑制作用。SV1和SV2抑制相同的酯酶电泳条带,但SV1的抑制作用相对小一些。SVt对酯酶的抑制是它在家蝇体内对二氯苯醚菊酯增效的机理之一。  相似文献   

14.
淡色库蚊酯酶等位基因及其在自然种群中的频率分布   总被引:6,自引:0,他引:6  
酯酶基因扩增所产生的酯酶活性升高是库蚊Culex pipiens对有机磷杀虫剂抗性的主要机理之一。采用分子杂交技术和限制性酶切片段长度多态性(RFLP)分析,已鉴定出多种酯酶等位基因类型。该文通过酯酶基因特异性片段的PCR扩增及扩增片段的酶切片段分析,对淡色库蚊Culex pipiens pallens四种有机磷抗性品系的酯酶等位基因进行分型,并测定分析自然种群中不同酶型的频率分布。研究结果表明:PCR分型方法具有快速、准确的特点。不同的有机磷杀虫剂对酯酶等位基因具有明显的选择作用。双硫磷品系为B1型;毒死蜱和敌百虫品系为B2型;马拉硫磷品系为B1型和B1/B2杂合型。不同地区采集的种群表现出不同的酶型频率分布。该文就杀虫剂对酯酶等位基因选择作用及自然种群的酶型频率分布进行了讨论。  相似文献   

15.
The effect of selection pressure on the cholinesterase (AChE) activity of two strains of Boophilus microplus (Canestrini) resistant to coumaphos was monitored. Total AChE and protein was determined from three generations of resistant ticks and a susceptible strain. The effect of an AChE inhibitor, coroxon (the oxygen analog of coumaphos), was also determined. The resistance of the susceptible strain (Escondido) to coumaphos remained relatively unchanged throughout the study. The Tuxpan strain lost some of its resistance to coumaphos as the generations proceeded (AChE increased instead of decreased). The Tuxtla strain became more resistant to coumaphos as the generations proceeded (AChE increased).  相似文献   

16.
17.
Samples of the dengue vector mosquito Aedes aegypti (L.) (Diptera: Culicidae) were collected from 13 localities between 1995 and 1998. Two laboratory strains, Bora (French Polynesia) and AEAE, were both susceptible to DDT and permethrin; all other strains, except Larentuka (Indonesia) and Bouaké (Ivory Coast), contained individual fourth-instar larvae resistant to permethrin. Ten strains were subjected to a range of biochemical assays. Many strains had elevated carboxylesterase activity compared to the Bora strain; this was particularly high in the Indonesian strains Salatiga and Semarang, and in the Guyane strain (Cayenne). Monooxygenase levels were increased in the Salatiga and Paea (Polynesia) strains, and reduced in the two Thai strains (Mae Kaza, Mae Kud) and the Larentuka strain. Glutathione S-transferase activity was elevated in the Guyane strain. All other enzyme profiles were similar to the susceptible strain. The presence of both DDT and pyrethroid resistance in the Semarang, Belem (Brazil) and Long Hoa (Vietnam) strains suggested the presence of a knock-down resistant (kdr)-type resistance mechanism. Part of the S6 hydrophobic segment of domain II of the voltage-gated sodium channel gene was obtained by RT-PCR and sequenced from several insects from all 13 field strains. Four novel mutations were identified. Three strains contained identical amino acid substitutions at two positions, two strains shared a different substitution, and one strain was homozygous for a fourth alteration. The leucine to phenylalanine substitution that confers nerve insensitivity to pyrethroids in a range of other resistant insects was absent. Direct neurophysiological assays on individual larvae from three strains with these mutations demonstrated reduced nerve sensitivity to permethrin or lambda cyhalothrin inhibition compared to the susceptible strains.  相似文献   

18.
To investigate the molecular mechanism of resistance to pyrethroids in the southern cattle tick, Boophilus microplus, we have obtained and sequenced a partial para-homologous sodium channel cDNA from susceptible and pyrethroid-resistant tick strains. A point mutation that results in an amino acid change from Phe to Ile was identified in the highly conserved domain IIIS6 of the homologous sodium channel from ticks that are highly resistant to pyrethroid acaricides. This mutation is at a location different from those reported in the same gene in pyrethroid-resistant insects.  相似文献   

19.
Three strains of German cockroach, Blattella germanica (L.) showed varying levels of resistance to chlorpyrifos, methyl parathion, propoxur, bendiocarb, and cypermethrin. The general esterase activity was at least twofold higher than susceptible strain. The subcellular distribution studies revealed that the majority of the esterase activity is present in the 100,000g cytosolic fraction. Only a small portion of the activity was membrane bound. Using non-denaturing gel electrophoresis, ten isozymes were identified in German cockroaches. These isozymes were isolated individually from the gels and analyzed for differences in activity. The isozymes E5, E6, and E7 of resistant strains had significantly higher specific activities when compared with the susceptible strain. The purification process using various column chromatography and preparative gel electrophoresis resulted in 9–11% of total esterase recovery. About double the amount of E6 was recovered from the resistant strains when compared with the susceptible strain. Kinetic analyses of E6 did not indicate differences in Km and Vmax values between the resistant and susceptible strains. Also, inhibition of esterase activity by paraoxon, chlorpyrifos, and propoxur did not suggest any structural differences in esterase E6 between strains. The results suggest that the increased production of E6 esterase contributes to insecticide resistance in German cockroaches. The role of E6 may be sequestration of toxic molecules rather than hydrolysis. © 1996 Wiley-Liss, Inc.  相似文献   

20.
王利华  吴益东 《昆虫学报》2008,51(3):277-283
本研究明确了kdr突变和解毒代谢在B型烟粉虱Bemisia tabaci对高效氯氰菊酯抗性中的作用。B型烟粉虱NJ品系相对于烟粉虱敏感品系(SUD-S,非B型)对高效氯氰菊酯有266倍的抗性。对NJ品系用高效氯氰菊酯进行群体筛选获得抗性为811倍的NJ-R1品系,对NJ品系进行单对交配筛选获得抗性达2 634倍的NJ-R2品系。在NJ,NJ-R1和NJ-R2品系间,酯酶、多功能氧化酶和谷胱甘肽S-转移酶活性无显著差异,说明在筛选过程中解毒代谢没有发生变化。PASA检测结果表明,NJ-R2品系钠离子通道基因L925I突变(kdr突变)频率为100%,NJ-R1品系为80.6%,NJ品系为55%。由此可见,kdr突变频率的增加是B型烟粉虱种群对高效氯氰菊酯抗性上升的主要原因。在NJ,NJ-R1和NJ-R2品系中,增效醚(PBO)对高效氯氰菊酯的增效作用均为20倍左右,而PBO对SUD-S品系没有任何增效作用。PBO能同时抑制烟粉虱的多功能氧化酶和酯酶,通过与TPP增效作用进行对比表明,在B型烟粉虱中PBO所产生的增效作用主要来源于对酯酶的抑制。因此,B型烟粉虱品系(NJ-R2,NJ-R1和NJ)与非B型SUD-S品系相比存在20倍左右的先天抗性,该先天抗性主要与B型烟粉虱的特有酯酶有关。在B型烟粉虱品系对高效氯氰菊酯的抗性中,抗性水平完全由kdr突变频率高低所决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号