首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Polyalanine expansions in the PHOX2B gene have been detected in the vast majority of patients affected with congenital central hypoventilation syndrome, a neurocristopathy characterized by absence of adequate control of breathing, especially during sleep, with decreased sensitivity to hypoxia and hypercapnia. The correlation between length of the alanine expanded tracts and severity of congenital central hypoventilation syndrome respiratory phenotype has been confirmed by length-dependent cytoplasmic PHOX2B retention with formation of aggregates. To deepen into the molecular mechanisms mediating the effects of PHOX2B polyalanine expansions, we have set up experiments aimed at assessing the fate of cells characterized by PHOX2B polyalanine aggregates. In particular, we have observed that activation of the heat shock response by the drug geldanamycin is efficient both in preventing formation and in inducing clearance of PHOX2B pre-formed polyalanine aggregates in COS-7 cells expressing PHOX2B-GFP fused proteins, and ultimately also in rescuing the PHOX2B ability to transactivate the Dopamine-beta-Hydroxilase promoter. In addition, we have demonstrated elimination of PHOX2B mutant proteins by the proteasome and autophagy, two cellular mechanisms already been involved in the clearance of proteins containing expanded polyglutamine and polyalanine tracts. Moreover, our data suggest that geldanamycin effects on PHOX2B aggregates may be also mediated by the proteasome pathway. Finally, analysis of cellular toxicity due to polyalanine aggregates has confirmed the occurrence of cell apoptosis consequent to expression of PHOX2B carrying the longest expanded alanine tract and shown that geldanamycin can delay cell progression toward the most advanced apoptotic stages.  相似文献   

4.
Hand-foot-genital syndrome (HFGS) is a dominantly inherited congenital malformation affecting the distal limbs and genitourinary tract. Here, we describe the phenotype and its molecular basis in a family that presented with HFGS. Genetic analysis revealed that the condition is caused by an 18-bp in-frame duplication within a cryptic trinucleotide repeat sequence encoding an 18-residue polyalanine tract in the homeoboxgene ( HOX) A13. This mutation expands the stretch with six extra alanine residues. Similar types of mutation (plus eight alanines) have recently been found in another HFGS family and also in the human HOXD13 gene (plus seven up to plus 14 residues) where it leads to synpolydactyly (SPD), a further congenital limb malformation rarely associated with genital abnormalities. As observed in our family, all the expanded tracts encoding polyalanine, either reported for HOXA13 or HOXD13, are quite stable when transmitted within affected families. Unlike disorders with unstable expansions of perfect trinucleotide repeats the molecular mechanism underlying these polyalanine expansions should be unequal crossing-over rather than replication slippage. The alanine tract elongation may prevent protein-protein interactions of the mutant HOXA13, thereby inducing a localized heterochrony in the sequence of distal limb and genitourinary development.  相似文献   

5.
To understand more fully the structure and evolution of the SOX3 protein, we comparatively analyzed its orthologs in vertebrates. Since complex disorders are associated with human SOX3 polyalanine expansions, our investigation focused on both compositional and evolutionary analysis of various homopolymeric amino acid tracts observed in SOX3 orthologs. Our analysis revealed that the observed homopolymeric alanine, glycine, and proline tracts are mammal-specific, except for one polyglycine tract present in birds. Since it is likely that the SOX3 protein acquired additional roles in brain development in Eutheria, we might speculate that development of novel brain functions during the course of evolution was affected, at least in part, by such structural–functional changes in the SOX3 protein.  相似文献   

6.
Expansions of a (GCN)10/polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) cause autosomal dominant oculopharyngeal muscular dystrophy (OPMD). In OPMD muscles, as in models, PABPN1 accumulates in intranuclear inclusions (INIs) whereas in other diseases caused by similar polyalanine expansions, the mutated proteins have been shown to abnormally accumulate in the cytoplasm. This study presents the impact on the subcellular localization of PABPN1 produced by large expansions or deletion of its polyalanine tract. Large tracts of more than 24 alanines result in the nuclear accumulation of PABPN1 in SFRS2-positive functional speckles and a significant decline in cell survival. These large expansions do not cause INIs formation nor do they lead to cytoplasmic accumulation. Deletion of the polyalanine tract induces the formation of aggregates that are located on either side and cross the nuclear membrane, highlighting the possible role of the N-terminal polyalanine tract in PABPN1 nucleo-cytoplasmic transport. We also show that even though five other proteins with polyalanine tracts tend to aggregate when over-expressed they do not co-aggregate with PABPN1 INIs. This study presents the first experimental evidence that there may be a relative loss of function in OPMD by decreasing the availability of PABPN1 through an INI-independent mechanism.  相似文献   

7.
Nine human disorders result from the toxic accumulation and aggregation of proteins with expansions in their endogenous polyalanine (polyA) tracts. Given the prevalence of polyA tracts in eukaryotic proteomes, we wanted to understand the generality of polyA-expansion cytotoxicity by using yeast as a model organism. In our initial case, we expanded the polyA tract within the native yeast poly(Adenine)-binding protein Pab1 from 8A to 13A, 15A, 17A, and 20A. These expansions resulted in increasing formation of Pab1 inclusions, insolubility, and cytotoxicity that correlated with the length of the polyA expansion. Pab1 binds mRNA as part of its normal function, and disrupting RNA binding or altering cytoplasmic mRNA levels suppressed the cytotoxicity of 17A-expanded Pab1, indicating a requisite role for mRNA in Pab1 polyA-expansion toxicity. Surprisingly, neither manipulation suppressed the cytotoxicity of 20A-expanded Pab1. Thus longer expansions may have a different mechanism for toxicity. We think that this difference underscores the potential need to examine the cytotoxic mechanisms of both long and short expansions in models of expansion disorders.  相似文献   

8.
9.
Genomic instability at loci with tandem arrays of simple repeats is the cause for many neurological, neurodegenerative and neuromuscular diseases. When located in coding regions, disease-associated expansions of trinucleotide repeats are translated into homopolymeric amino acid stretches of glutamine or alanine. Polyalanine expansions in the poly(A)-binding protein nuclear 1 (PABPN1) gene causes oculopharyngeal muscular dystrophy (OPMD). To gain novel insight into the molecular pathophysiology of OPMD, we studied the interaction of cellular proteins with normal and expanded PABPN1. Pull-down assays show that heat shock proteins including Hsp70, and type I arginine methyl transferases (PRMT1 and PRMT3) associate preferentially with expanded PABPN1. Immunofluorescence microscopy further reveals accumulation of these proteins at intranuclear inclusions in muscle from OPMD patients. Recombinant PABPN1 with expanded polyalanine stretches binds Hsp70 with higher affinity, and data from molecular simulations suggest that expansions of the PABPN1 polyalanine tract result in transition from a disordered, flexible conformation to a stable helical secondary structure. Taken together, our results suggest that the pathological mutation in the PABPN1 gene alters the protein conformation and induces a preferential interaction with type I PRMTs and Hsp70 chaperones. This in turn causes sequestration in intranuclear inclusions, possibly leading to a progressive cellular defect in arginine methylation and chaperone activity.  相似文献   

10.
Cocquet J  De Baere E  Caburet S  Veitia RA 《Genetics》2003,165(3):1613-1617
Human proteins containing polyalanine tracts tend to have runs of other amino acids and their open reading frames (ORFs) display a biased codon usage. Their alanine, glycine, proline, and histidine content strongly correlates with the GC content of the third codon base, suggesting that the compositional specificity of these proteins is dictated to a great extent by the evolution of their ORFs.  相似文献   

11.
Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.  相似文献   

12.
13.
14.
15.
Many human proteins contain consecutive amino acid repeats, known as homopolymeric amino acid (HPAA) tracts. Some inherited diseases are caused by proteins in which HPAAs are expanded to an excessive length. To this day, nine polyglutamine-related diseases and nine polyalanine-related diseases have been reported, including Huntington's disease and oculopharyngeal muscular dystrophy. In this study, potential HPAA-HPAA interactions were examined by yeast two-hybrid assays using HPAAs of approximately 30 residues in length. The results indicate that hydrophobic HPAAs interact with themselves and with other hydrophobic HPAAs. Previously, we reported that hydrophobic HPAAs formed large aggregates in COS-7 cells. Here, those HPAAs were shown to have significant interactions with each other, suggesting that hydrophobicity plays an important role in aggregation. Among the observed HPAA-HPAA interactions, the Ala28-Ala29 interaction was notable because polyalanine tracts of these lengths have been established to be pathogenic in several polyalanine-related diseases. By testing several constructs of different lengths, we clarified that polyalanine self-interacts at longer lengths (>23 residues) but not at shorter lengths (six to approximately 23 residues) in a yeast two-hybrid assay and a GST pulldown assay. This self-interaction was found to be SDS sensitive in SDS-PAGE and native-PAGE assays. Moreover, the intracellular localization of these long polyalanine tracts was also observed to be disturbed. Our results suggest that long tracts of polyalanine acquire SDS-sensitive self-association properties, which may be a prerequisite event for their abnormal folding. The misfolding of these tracts is thought to be a common molecular aspect underlying the pathogenesis of polyalanine-related diseases.  相似文献   

16.
Many human proteins have homopolymeric amino acid (HPAA) tracts, which are involved in protein-protein interactions and also have intrinsic polymerization properties. Polyglutamine or polyalanine expansions cause several neurodegenerative diseases. To examine the properties of HPAAs, we expressed 20 kinds of 30-residue HPAA fused to the C terminus of yellow fluorescent protein in mammalian cells. Specific localization was observed depending on the HPAA. Polyarginine and polylysine aggregated in the nucleus. Polyalanine, polyhistidine, polyisoleucine, polyleucine, polymethionine, polyphenylalanine, polythreonine, polytryptophan, and polyvaline localized in the cytoplasm, and some of these HPAAs formed aggregate(s). Hydrophobic HPAAs such as polyisoleucine, polyleucine, polyphenylalanine, and polyvaline were found as one major aggregate or cumulus in the perinuclear region. Western blot analysis indicated that hydrophobic HPAA tracts appear to oligomerize and form high molecular weight complexes. These results indicate that hydrophobicity itself may trigger the oligomerization and aggregation of proteins when overexpressed in cells. Our experiments provide novel insights into the nature of the HPAAs that are often seen in human and other organisms.  相似文献   

17.
18.
A broad range of degenerative diseases is associated with intracellular inclusions formed by toxic, aggregation-prone mutant proteins. Intranuclear inclusions constitute a pathological hallmark of oculopharyngeal muscular dystrophy (OPMD), a dominantly inherited disease caused by (GCG) repeat expansions in the gene that encodes for nuclear poly(A) binding protein (PABPN1). The mutation results in an extended polyalanine stretch that has been proposed to induce protein aggregation and formation of intranuclear inclusions. Here we show that normal PABPN1 is inherently aggregation-prone when exogenously expressed in either HeLa or myogenic C2 cells. Similar deposits of insoluble PABPN1 are formed by variant forms of the protein containing either a polyalanine expansion or a complete deletion of the polyalanine tract, indicating that the mutation responsible for OPMD is not essential for formation of PABPN1 inclusions. In contrast, interfering with any of the protein domains required for stimulation of poly(A) polymerase prevents the formation of inclusions. Most surprisingly, photobleaching experiments reveal that both normal and expanded PABPN1 molecules are not irreversibly sequestered into aggregates, but rather move rapidly in and out of the inclusions. These findings have important implications for the interpretation of OPMD model systems based on exogenous expression of PABPN1.  相似文献   

19.
Oculopharyngeal muscular dystrophy (OPMD) is a muscle disease of late onset associated with progressive ptosis of the eyelids, dysphagia, and unique tubulofilamentous intranuclear inclusions (INIs). OPMD is usually transmitted as an autosomal dominant trait (OMIM 164300). A rarer allelic autosomal recessive form has also been observed (OMIM 257950). Both forms are caused by short (GCG)8-13 expansions in the polyadenylate-binding protein nuclear 1 gene (PABPN1) located on chromosome 14q11.1. The mutations cause the lengthening of an N-terminal polyalanine domain. Both slippage and unequal recombination have been proposed as the mutation mechanisms. The size of the mutation has not yet been conclusively shown to inversely correlate with the severity of the phenotype. Mutated PABPN1 proteins have been shown to be constituents of the INIs. The INIs also contain ubiquitin, proteasome subunits, HSP 40, HSP 70, SKIP, and abundant poly(A)-mRNA. The exact mechanism responsible for polyalanine toxicity in OPMD is unknown. Various intranuclear inclusion dependent and independent mechanisms have been proposed based on the major known function of PABPN1 in polyadenylation of mRNA and its shuttling from the nucleus to the cytoplasm. OPMD is one of the few triplet-repeat diseases for which the function of the mutated gene is known. Because of the increasing number of diseases caused by polyalanine expansions and the pathological overlap with CAG/polyglutamine diseases, what pathological insight is gained by the study of OPMD could lead to a better understanding of a much larger group of developmental and degenerative diseases.  相似文献   

20.
Autosomal dominant oculopharyngeal muscular dystrophy (OPMD) is characterized pathologically by intranuclear inclusions in skeletal muscles and is caused by the expansion of a 10-alanine stretch to 12-17 alanines in the intranuclear poly(A)-binding protein 2 (PABP2). Whereas PABP2 is a major component of the inclusions in OPMD, the pathogenic mechanisms causing disease are unknown. Here we show that polyalanine expansions in PABP2 cause increased numbers of inclusions and enhance death in COS-7 cells. We observed similar increases of protein aggregation and cell death with nuclear-targeted green fluorescent protein linked to longer versus shorter polyalanine stretches. Intranuclear aggregates in our OPMD cell model were associated with heat shock protein (HSP) 40 (HDJ-1) and HSP70. Human HDJ-1, yeast hsp104, a bacterially derived GroEL minichaperone, and the chemical chaperone Me(2)SO reduced both aggregation and cell death in our OPMD model without affecting the levels of PABP2, and similar trends were seen with green fluorescent protein with long polyalanine stretches. Thus, polyalanine expansion mutations in different protein contexts cause proteins to misfold/aggregate and kill cells. The situation in OPMD appears to have many parallels with polyglutamine diseases, raising the possibility that misfolded, aggregate-prone proteins may perturb similar pathways, irrespective of the nature of the mutation or protein context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号