首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the characteristic features of allergic asthma is recruitment of large numbers of inflammatory cells including eosinophils and Th2 lymphocytes to the lung. This influx of inflammatory cells is thought to be a controlled and coordinated process mediated by chemokines and their receptors. It is thought that distinct, differential expression of chemokine receptors allows selective migration of T cell subtypes in response to the chemokines that bind these receptors. Th2 cells preferentially express CCR8 and migrate selectively to its ligand, CC chemokine ligand (CCL)1. We studied the role of the CCR8 ligand, CCL1, in the specific recruitment of Th2 cells and eosinophils to the lung in a murine model of allergic airway disease. We have demonstrated for the first time that CCL1 is up-regulated in the lung following allergen challenge. Moreover, a neutralizing Ab to CCL1 reduced eosinophil migration to the lung, but had no effect on recruitment of Th2 cells following allergen challenge. In addition, there was no change in airway hyperresponsiveness or levels of Th2 cytokines. In a Th2 cell transfer system of pulmonary inflammation, anti-CCL1 also failed to affect recruitment of Th2 cells to the lung following allergen challenge. Significantly, intratracheal instillation of rCCL1 increased recruitment of eosinophils but not Th2 cells to the lung in allergen-sensitized and -challenged mice. In summary, our results indicate that CCL1 is important for the pulmonary recruitment of eosinophils, rather than allergen-specific Th2 cells, following allergen challenge.  相似文献   

2.
CCR3 is responsible for tissue infiltration of eosinophils, basophils, mast cells, and Th2 cells, particularly in allergic diseases. In this context, CCR3 has emerged as a target for the treatment of allergic asthma. It is well known that the N-terminal domain of chemokines is crucial for receptor binding and, in particular, its activation. Based on this background, we investigated a number of N-terminally truncated or modified peptides derived from the chemokine CCL14/hemofiltrate CC chemokine-1 for their ability to modulate the activity of CCR3. Among 10 derivatives tested, n-nonanoyl (NNY)-CCL14[10-74] (NNY-CCL14) was the most potent at evoking the release of reactive oxygen species and inducing chemotaxis of human eosinophils. In contrast, NNY-CCL14 has inactivating properties on human eosinophils, because it is able to induce internalization of CCR3 and to desensitize CCR3-mediated intracellular calcium release and chemotaxis. In contrast to naturally occurring CCL11, NNY-CCL14 is resistant to degradation by CD26/dipeptidyl peptidase IV. Because inhibition of chemokine receptors through internalization is a reasonable therapeutic strategy being pursued for HIV infection, we tested a potential inhibitory effect of NNY-CCL14 in two murine models of allergic airway inflammation. In both OVA- and Aspergillus fumigatus-sensitized mice, i.v. treatment with NNY-CCL14 resulted in a significant reduction of eosinophils in the airways. Moreover, airway hyper-responsiveness was shown to be reduced by NNY-CCL14 in the OVA model. It therefore appears that an i.v. administered agonist internalizing and thereby inhibiting CCR3, such as NNY-CCL14, has the potential to alleviate CCR3-mediated diseases.  相似文献   

3.
Eotaxin-3 (CCL26), like eotaxin (CCL11) and eotaxin-2 (CCL24), has long been considered a specific agonist for CC chemokine receptor 3 (CCR3), attracting and activating eosinophils, basophils, and Th2 type T lymphocytes. Although not characterized extensively yet, its expression profile coincides with a potential role in allergic inflammation. We recently reported that eotaxin-3 is an antagonist for CCR2 (Ogilvie, P., Paoletti, S., Clark-Lewis, I., and Uguccioni, M. (2003) Blood 102, 789-784). In the present report, we provide evidence that eotaxin-3 acts as a natural antagonist on CCR1 and -5 as well. Eotaxin-3 bound to cells transfected with either CCR1 or -5 as well as to monocytes expressing both receptors. Further, it inhibited chemotaxis, the release of free intracellular calcium, and actin polymerization when cells were stimulated with known agonists of CCR1 and -5. An analysis of its three-dimensional structure indicated the presence of two distinct epitopes that may be involved in specific binding to CCR1, -2, -3, and -5. Taken together, our data thus indicate eotaxin-3 to be the first human chemokine that features broadband antagonistic activities, suggesting that it may have a modulatory rather than an inflammatory function. Further, eotaxin-3 may play an unrecognized role in the polarization of cellular recruitment by attracting Th2 lymphocytes as well as eosinophils and basophils via CCR3, while concomitantly blocking the recruitment of Th1 lymphocytes and monocytes via CCR1, -2, and -5.  相似文献   

4.
Macrophage inflammatory protein-1   总被引:1,自引:0,他引:1  
Macrophage inflammatory protein (MIP)-1alpha was identified 15 years ago as the first of now four members of the MIP-1 CC chemokine subfamily. These proteins termed CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CCL9/10 (MIP-1delta), and CCL15 (MIP-1gamma) according to the revised nomenclature for chemokines are produced by many cells, particularly macrophages, dendritic cells, and lymphocytes. MIP-1 proteins, which act via G-protein-coupled cell surface receptors (CCR1, 3, 5), e.g. expressed by lymphocytes and monocytes/macrophages (MPhi), are best known for their chemotactic and proinflammatory effects but can also promote homoeostasis. The encouraging results of preclinical studies in murine models of inflammation, i.e. asthma, arthritis, or multiple sclerosis, have led to the development of potent CCR3 and 5 antagonists, some of which are currently being tested in first clinical trials.  相似文献   

5.

Background  

Macrophages (Mθ) play a central role in the innate immune response and in the pathology of chronic inflammatory diseases. Macrophages treated with Th2-type cytokines such as Interleukin-4 (IL-4) and Interleukin-13 (IL-13) exhibit an altered phenotype and such alternatively activated macrophages are important in the pathology of diseases characterised by allergic inflammation including asthma and atopic dermatitis. The CC chemokine Thymus and Activation-Regulated Chemokine (TARC/CCL17) and its murine homologue (mTARC/ABCD-2) bind to the chemokine receptor CCR4, and direct T-cell and macrophage recruitment into areas of allergic inflammation. Delineating the molecular mechanisms responsible for the IL-4 induction of TARC expression will be important for a better understanding of the role of Th2 cytokines in allergic disease.  相似文献   

6.
Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic reactions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11((3-74)). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils. Furthermore, they illustrate that inhibitors of DPPIV have the potential to interfere with chemokine-mediated effects in vivo including but not limited to allergy.  相似文献   

7.
The CC chemokine eotaxin/CCL11 is known to bind to the receptor CCR3 on eosinophils and Th2-type lymphocytes. In this study, we demonstrate that CCR3 is expressed on a subpopulation of primary human dermal microvascular endothelial cells and is up-regulated by TNF-alpha. We found that incubation of human dermal microvascular endothelial cells with recombinant eotaxin/CCL11 suppresses TNF-alpha-induced production of the neutrophil-specific chemokine IL-8/CXCL8. The eotaxin/CCL11-suppressive effect on endothelial cells was not seen on IL-1beta-induced IL-8/CXCL8 release. Eotaxin/CCL11 showed no effect on TNF-alpha-induced up-regulation of growth-related oncogene-alpha or IFN-gamma-inducible protein-10, two other CXC chemokines tested, and did not affect production of the CC chemokines monocyte chemoattractant protein-1/CCL2 and RANTES/CCL5, or the adhesion molecules ICAM-1 and E-selectin. These results suggest that eotaxin/CXCL11 is not effecting a general suppression of TNF-alphaR levels or signal transduction. Suppression of IL-8/CXCL8 was abrogated in the presence of anti-CCR3 mAb, pertussis toxin, and wortmannin, indicating it was mediated by the CCR3 receptor, G(i) proteins, and phosphatidylinositol 3-kinase signaling. Eotaxin/CCL11 decreased steady state levels of IL-8/CXCL8 mRNA in TNF-alpha-stimulated cells, an effect mediated in part by an acceleration of IL-8 mRNA decay. Eotaxin/CCL11 may down-regulate production of the neutrophil chemoattractant IL-8/CXCL8 by endothelial cells in vivo, acting as a negative regulator of neutrophil recruitment. This may play an important biological role in the prevention of overzealous inflammatory responses, aiding in the resolution of acute inflammation or transition from neutrophilic to mononuclear/eosinophilic inflammation.  相似文献   

8.
Liver-expressed chemokine (LEC)/CCL16 is a human CC chemokine that is constitutively expressed by the liver parenchymal cells and present in the normal plasma at high concentrations. Previous studies have shown that CCL16 is a low-affinity ligand for CCR1, CCR2, CCR5, and CCR8 and attracts monocytes and T cells. Recently, a novel histamine receptor termed type 4 (H4) has been identified and shown to be selectively expressed by eosinophils and mast cells. In this study, we demonstrated that CCL16 induced pertussis toxin-sensitive calcium mobilization and chemotaxis in murine L1.2 cells expressing H4 but not those expressing histamine receptor type 1 (H1) or type 2 (H2). CCL16 bound to H4 with a K(d) of 17 nM. By RT-PCR, human and mouse eosinophils express H4 but not H3. Accordingly, CCL16 induced efficient migratory responses in human and mouse eosinophils. Furthermore, the responses of human and mouse eosinophils to CCL16 were effectively suppressed by thioperamide, an antagonist for H3 and H4. Intravenous injection of CCL16 into mice induced a rapid mobilization of eosinophils from bone marrow to peripheral blood, which was also suppressed by thioperamide. Collectively, CCL16 is a novel functional ligand for H4 and may have a role in trafficking of eosinophils.  相似文献   

9.
During acute inflammation, monocytes are essential in abolishing invading micro-organisms and encouraging wound healing. Recruitment by CC chemokines is an important step in targeting monocytes to the inflamed tissue. However, cell surface expression of the corresponding chemokine receptors is subject to regulation by various endogenous stimuli which so far have not been comprehensively identified. We report that the platelet-derived CXC chemokine ligand 4 (CXCL4), a known activator of human monocytes, induces down-regulation of CC chemokine receptors (CCR) 1, -2, and -5, resulting in drastic impairment of monocyte chemotactic migration towards cognate CC chemokine ligands (CCL) for these receptors. Interestingly, CXCL4-mediated down-regulation of CCR1, CCR2 and CCR5 was strongly dependent on the chemokine's ability to stimulate autocrine/paracrine release of TNF-α. In turn, TNF-α induced the secretion CCL3 and CCL4, two chemokines selective for CCR1 and CCR5, while the secretion of CCR2-ligand CCL2 was TNF-α-independent. Culture supernatants of CXCL4-stimulated monocytes as well as chemokine-enriched preparations thereof reproduced CXCL4-induced CCR down-regulation. In conclusion, CXCL4 may act as a selective regulator of monocyte migration by stimulating the release of autocrine, receptor-desensitizing chemokine ligands. Our results stress a co-ordinating role for CXCL4 in the cross-talk between platelets and monocytes during early inflammation.  相似文献   

10.
CC chemokine ligand (CCL)17 and CCL27 produced by epidermal keratinocytes (KCs) recruit CC chemokine receptor (CCR)4 and CCR10 expressing T cells into the skin, respectively, resulting in enhanced skin inflammation. However, CCR4/CCL17 and CCR10/CCL27 interactions in epidermal KCs have not been investigated. The purpose of this study was to evaluate the role of the CCR4/CCL17 and CCR10/CCL27 loops in cutaneous immune reaction. Normal human KCs (NHKs) and HaCaT KCs expressed both CCR4 and CCR10 at mRNA and protein levels. CCR4 ligand CCL17 but not CCR10 ligand CCL27 induced production of IL-12 p40, granulocyte/monocyte colony-stimulating factor (GM-CSF) and nerve growth factor (NGF) by KCs. Both CCL17 and CCL27 induced migration of KCs in Boyden chamber assay and wound scratch assay. This study revealed that CCR4 and CCR10 are expressed on epidermal KCs and that both are functional in terms of skin cytokine production and/or migration to their ligand CCL17 and CCL27, respectively. Thus this study provided new insight into chemokine/chemokine receptors of KCs.  相似文献   

11.
CCL28 is a mucosal chemokine that attracts eosinophils and T cells via the receptors CCR3 and CCR10. Consequently, it is a candidate mediator of the pathology associated with asthma. This study examined constitutive and induced expression of CCL28 by A549 human airway epithelial-like cells. Real-time RT-PCR and ELISA of cultured cells and supernatants revealed constitutive levels of CCL28 expression to be low, whereas IL-1beta and TNF-alpha, induced significantly increased expression. Observations from induced sputum and human airway biopsies supported this. Signal transduction studies revealed that IL-1beta and TNF-alpha stimulation induced NFkappaB phosphorylation in A549 cells, but antagonist inhibition of NFkappaB p50-p65 phosphorylation correlated with marked reduction of IL-1beta or TNF-alpha induced CCL28 expression. Together these studies imply a role for CCL28 in the orchestration of airway inflammation, and suggest that CCL28 is one link between microbial insult and the exacerbation of pathologies such as asthma, through an NFkappaB-dependent mechanism.  相似文献   

12.
Chemokines mediate trafficking of leukocytes to sites of inflammation and immune responses through activation of G protein-coupled receptors, which thereby provide appealing targets for novel anti-inflammatory agents. Vasoactive intestinal peptide (VIP) is an immunosuppressive neurotransmitter. We show that VIP inhibited the function of chemokine receptors on monocytes and CD4(+) T lymphocytes, with impaired chemotaxis and calcium flux in response to the cognate chemokine ligands CXCL12, CCL3, CCL4, and CCL5. This was mediated by VIP receptor type 1 and was not caused by chemokine receptor internalization. However, VIP caused dose-dependent phosphorylation of the chemokine receptor CCR5. This trans-deactivation process was studied in a murine model of delayed-type hypersensitivity: continuous infusion of VIP resulted in significant abrogation of monocyte and lymphocyte infiltration. Circulating mononuclear cells from VIP-infused mice were unable to respond to chemokines. VIP may provide a novel approach to treatment of inflammatory diseases through inhibition of chemokine-dependent leukocyte recruitment.  相似文献   

13.
《Cytokine》2007,37(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1α (CCL3) whose expression was induced by the Th1 cytokines IL-1β and IFN-γ. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

14.
Abonyo BO  Lebby KD  Tonry JH  Ahmad M  Heiman AS 《Cytokine》2006,36(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

15.
16.
The chemokine receptor CCR5 is predominantly expressed on monocytes and Th1-polarized T cells, and plays an important role in T cell and monocyte recruitment in inflammatory diseases. To investigate the functional role of CCR5 in renal inflammation, we induced a T cell-dependent model of glomerulonephritis (nephrotoxic serum nephritis) in CCR5(-/-) mice. Induction of nephritis in wild-type mice resulted in up-regulation of renal mRNA expression of the three CCR5 chemokine ligands, CCL5 (15-fold), CCL3 (4.9-fold), and CCL4 (3.4-fold), in the autologous phase of the disease at day 10. The up-regulated chemokine expression was paralleled by infiltration of monocytes and T cells, followed by renal tissue injury, albuminuria, and loss of renal function. Nephritic CCR5(-/-) mice showed a 3- to 4-fold increased renal expression of CCL5 (61.6-fold vs controls) and CCL3 (14.1-fold vs controls), but not of CCL4, in comparison with nephritic wild-type mice, which was accompanied by augmented renal T cell and monocyte recruitment and increased lethality due to uremia. Furthermore, CCR5(-/-) mice showed an increased renal Th1 response, whereas their systemic humoral and cellular immune responses were unaltered. Because the CCR5 ligands CCL5 and CCL3 also act via CCR1, we investigated the effects of the pharmacological CCR1 antagonist BX471. CCR1 blockade in CCR5(-/-) mice significantly reduced renal chemokine expression, T cell infiltration, and glomerular crescent formation, indicating that increased renal leukocyte recruitment and consecutive tissue damage in nephritic CCR5(-/-) mice depended on functional CCR1. In conclusion, this study shows that CCR5 deficiency aggravates glomerulonephritis via enhanced CCL3/CCL5-CCR1-driven renal T cell recruitment.  相似文献   

17.
Skin-infiltrating T-cells play a predominant role in allergic and inflammatory skin diseases such as atopic dermatitis, psoriasis and allergic contact dermatitis. These T-cells are attracted by several chemotactic factors including the chemokine CCL5/RANTES, a CC chemokine inducing both the migration and activation of specific leukocyte subsets. CCL5 has been found to be associated with various cell-mediated hypersensitive disorders such as psoriasis, atopic dermatitis and irritant contact dermatitis. We have used two antagonists, the first, Met-CCL5, a dual CCR1/CCR5 antagonist and the second, a variant in which GAG binding is abrogated, 44AANA47-CCL5, which acts as a dominant negative inhibitor of CCL5. The antagonists were tested in two models of contact skin reaction. The first, irritant contact dermatitis (ICD) is a pathological non-specific inflammatory skin condition arising from the release of pro-inflammatory cytokines by keratinocytes in response to haptens, usually chemicals. The second, contact hypersensitivity (CHS) is a T-cell dependent model, mimicking in part the T-cell-mediated skin diseases such as psoriasis. In both models, the CCL5 antagonists showed therapeutic efficacy by reducing swelling by 50% as well as the reduction of soluble mediators in homogenates derived from challenged ears. These results demonstrate that blocking the receptor or the ligand are both effective strategies to inhibit skin inflammation.  相似文献   

18.
Asthma is characterized by airway hyperresponsiveness (AHR) and inflammation, consisting predominantly of eosinophils within the airway lumen and walls. Eosinophil recruitment to the airways is mediated mainly by eotaxin and other chemokines that bind to the CC-chemokine receptor-3 (CCR3), which is highly expressed on eosinophils. This study assessed whether topical inhibition of CCR3 mRNA expression by phosphorothioate antisense oligodeoxynucleotides (AS-ODNs) modifies pulmonary eosinophilia and AHR in an antigen-induced allergic asthma model in Brown Norway (BN) rats. Results show that specific inhibition of CCR3 expression in the lungs by an AS-ODN (AS4) reduced total eosinophil infiltration and the percentage of eosinophils into the airways of ovalbumin challenged rats. Moreover, reduction in CCR3 mRNA levels was correlated with a decrease in CCR3 protein in lung tissue. In addition, AS4 treatment had no effect on circulating eosinophils or on eosinophils in the bone marrow. Finally, AHR was significantly decreased in AS4-treated rats when compared with rats treated with a mismatch AS-ODN. In conclusion, inhibition of the expression of CCR3 decreased pulmonary eosinophilia and reduced AHR after antigen challenge in rats. Topical inhibition of CCR3 expression, using an AS-ODN, could represent a novel approach for the treatment of asthma.  相似文献   

19.
The CC chemokine ligand-2 (CCL2) and its receptor CCR2 are essential for monocyte trafficking under inflammatory conditions. However, the mechanisms that determine the intensity and duration of alveolar monocyte accumulation in response to CCL2 gradients in inflamed lungs have not been resolved. To determine the potential role of CCR2-expressing monocytes in regulating alveolar CCL2 levels, we compared leukocyte recruitment kinetics and alveolar CCL2 levels in wild-type and CCR2-deficient mice in response to intratracheal LPS challenge. In wild-type mice, LPS elicited a dose- and time-dependent alveolar monocyte accumulation accompanied by low CCL2 levels in bronchoalveolar lavage fluid (BALF). In contrast, LPS-treated CCR2-deficient mice lacked alveolar monocyte accumulation, which was accompanied by relatively high CCL2 levels in BALF. Similarly, wild-type mice that were treated systemically with the blocking anti-CCR2 antibody MC21 completely lacked LPS-induced alveolar monocyte trafficking that was associated with high CCL2 levels in BALF. Intratracheal application of anti-CCR2 antibody MC21 to locally block CCR2 on both resident and recruited cells did not affect LPS-induced alveolar monocyte trafficking but led to significantly increased BALF CCL2 levels. Reciprocally bone marrow-transplanted, LPS-treated wild-type and CCR2-deficient mice showed a strict inverse relationship between alveolar monocyte recruitment and BALF CCL2 levels. In addition, freshly isolated human and mouse monocytes were capable of integrating CCL2 in vitro. LPS-induced alveolar monocyte accumulation is accompanied by monocytic CCR2-dependent consumption of CCL2 levels in the lung. This feedback loop may limit the intensity of monocyte recruitment to inflamed lungs and play a role in the maintenance of homeostasis.  相似文献   

20.
A non-glycosaminoglycan (GAG)-binding variant of the pleiotropic chemokine CCL7 was generated by mutating to alanine the basic (B) amino acids within an identified (44)BXBXXB(49) GAG-binding motif. Unlike wild-type (wt) CCL7, the mutant sequence had no affinity for heparin. However, the mutant retained a normal affinity for CCR1, CCR2b, and CCR3, and produced a normal calcium flux in mononuclear leukocytes. Both the wt and mutant proteins elicited an equal leukocyte chemotactic response within a solute diffusion gradient but, unlike the wt protein, the mutant failed to stimulate cell migration across a model endothelium. The number of leukocytes recruited to murine air pouches by the mutant sequence was lower than that recruited by wt CCL7. Furthermore, the presence of a mixture of a mutant and wt CCL7 within the air pouch elicited no significant cell accumulation. Cell recruitment also failed using a receptor-sharing mixture of mutant CCL7 and wt CCL5 or a nonreceptor sharing mixture of mutant CCL7 and wt CXCL12. The potential of the mutant sequence to modulate inflammation was confirmed by demonstration of its ability to inhibit the chemotactic response generated in vitro by synovial fluid from patients with active rheumatoid arthritis. A further series of experiments suggested that the non-GAG-binding mutant protein could potentially induce receptor desensitization before, and at a site remote from, any physiological recognition of GAG-bound chemokines. These data demonstrate that GAG binding is required for chemokine-driven inflammation in vivo and also suggest that a non-GAG-binding chemokine receptor agonist can inhibit the normal vectorial leukocyte migration mediated by chemokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号