共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Almeida LO Custódio AC Araújo JJ Rey JA Almeida JR Santos MJ Clara CA Casartelli C 《Genetics and molecular research : GMR》2008,7(2):451-459
Cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors. 相似文献
3.
Tumor suppressor INK4: refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data 下载免费PDF全文
Yuan C Selby TL Li J Byeon IJ Tsai MD 《Protein science : a publication of the Protein Society》2000,9(6):1120-1128
Within the tumor suppressor protein INK4 (inhibitor of cyclin-dependent kinase 4) family, p15INK4B is the smallest and the only one whose structure has not been determined previously, probably due to the protein's conformational flexibility and instability. In this work, multidimensional NMR studies were performed on this protein. The first tertiary structure was built by comparative modeling with p16INK4A as the template, followed by restrained energy minimization with NMR constraints (NOE and H-bonds). For this purpose, the solution structure of pl6INK4A, whose quality was also limited by similar problems, was refined with additional NMR experiments conducted on an 800 MHz spectrometer and by structure-based iterative NOE assignments. The nonhelical regions showed major improvement with root-mean-square deviation (RMSD) improved from 1.23 to 0.68 A for backbone heavy atoms. The completion of p15INK4B coupled with refinement of p16INK4A made it possible to compare the structures of the four INK4 members in depth, and to compare the structures of p16INK4A in the free form and in the p16INK4A-CDK6 complex. This is an important step toward a comprehensive understanding of the precise functional roles of each INK4 member. 相似文献
4.
5.
The p16INK4a tumor suppressor controls p21WAF1 induction in response to ultraviolet light 总被引:1,自引:0,他引:1
p16INK4a and p21WAF1, two major cyclin-dependent kinase inhibitors, are the products of two tumor suppressor genes that play important roles in various cellular metabolic pathways. p21WAF1 is up-regulated in response to different DNA damaging agents. While the activation of p21WAF1 is p53-dependent following γ-rays, the effect of ultraviolet (UV) light on p21WAF1 protein level is still unclear. In the present report, we show that the level of the p21WAF1 protein augments in response to low UVC fluences in different mammalian cells. This up-regulation is mediated through the stabilization of p21WAF1 mRNA in a p16INK4a-dependent manner in both human and mouse cells. Furthermore, using p16-siRNA treated human skin fibroblast; we have shown that p16 controls the UV-dependent cytoplasmic accumulation of the mRNA binding HuR protein. In addition, HuR immunoprecipitations showed that UV-dependent binding of HuR to p21 mRNA is p16-related. This suggests that p16 induces p21 by enabling the relocalization of HuR from the nucleus to the cytoplasm. Accordingly, we have also shown that p16 is necessary for efficient UV-dependent p53 up-regulation, which also requires HuR. These results indicate that, in addition to its role in cell proliferation, p16INK4a is also an important regulator of the cellular response to UV damage. 相似文献
6.
Expression and characterization of Syrian golden hamster p16, a homologue of human tumor suppressor p16 INK4A 总被引:3,自引:0,他引:3
Li J Qin D Knobloch TJ Tsai MD Weghorst CM Melvin WS Muscarella P 《Biochemical and biophysical research communications》2003,304(2):241-247
The p16(INK4A)/CDKN2A tumor suppressor gene is known to be inactivated in up to 98% of human pancreatic cancer specimens and represents a potential target for novel therapeutic intervention. Chemically induced pancreatic tumors in Syrian golden hamsters have been demonstrated to share many morphologic and biological similarities with human pancreatic tumors and this model may be appropriate for studying therapies targeting p16(INK4A)/CDKN2A. The purpose of this study was to investigate the fundamental biochemistry of hamster P16 protein. Using both in vivo and in vitro approaches, the CDK4 binding affinity, kinase inhibitory activity, and thermodynamic stability of hamster and human P16 proteins were evaluated. Furthermore, a structural model of hamster P16 protein was generated. These studies demonstrate that hamster P16 protein is biochemically indistinguishable from human P16 protein. From a biochemical perspective, these data strongly support the study of p16-related pancreatic oncogenesis and cancer therapies in the hamster model. 相似文献
7.
The ankyrin repeat is one of the most common protein motifs and is involved in protein-protein interactions. It consists of 33 residues that assume a beta-hairpin helix-loop-helix fold. Mutagenesis and kinetic experiments (Phi-value analysis of the folding transition state) have shown that the tumor suppressor p16(INK4a), a four-repeat protein, unfolds sequentially starting from the two N-terminal repeats. Here, the flexibility of p16(INK4a) at room temperature and its unfolding mechanism at high temperature have been investigated by multiple molecular dynamics runs in explicit water for a total simulation time of 0.65 micros. The transition state ensemble (TSE) of p16(INK4a) was identified by monitoring both the deviation from the experimental Phi values and sudden conformational changes along the unfolding trajectories. Conformations in the TSE have a mainly unstructured second repeat whereas the other repeats are almost completely folded. A rigid-body displacement of the first repeat involving both a rotation and translation is observed in all molecular dynamics simulations at high temperature. The Trp(15), Pro(75), and Ala(76) side-chains are more buried in the TSE than the native state. The sequential unfolding starting at the second repeat is in agreement with the mutagenesis studies whereas the displacement of the first repeat and the presence of nonnative interactions at the TSE are simulation results which supplement the experimental data. Furthermore, the unfolding trajectories reveal the presence of two on-pathway intermediates with partial alpha-helical structure. Finally, on the basis of the available experimental and simulation results we suggest that in modular proteins the shift of the folding TSE toward the native structure upon reduction of the number of tandem repeats is consistent with the Hammond effect. 相似文献
8.
9.
10.
Since the structures of several ankyrin-repeat proteins including the INK4 (inhibitor of cyclin-dependent kinase 4) family have been reported recently, the detailed structures and the functional roles of the loops have drawn considerable interest. This paper addresses the potential importance of the loops of ankyrin-repeat proteins in three aspects. First, the solution structure of p18INK4C was determined by NMR, and the loop structures were analyzed in detail. The loops adapt nascent antiparallel beta-sheet structures, but the positions are slightly different from those in the crystal structure. A detailed comparison between the solution structures of p16 and p18 has also been presented. The determination of the p18 solution structure made such detailed comparisons possible for the first time. Second, the [1H,15N]HSQC NMR experiment was used to probe the interactions between p18INK4C and other proteins. The results suggest that p18INK4C interacts very weakly with dna K and glutathione S-transferase via the loops. The third aspect employed site-specific mutagenesis and functional assays. Three mutants of p18 and 11 mutants of p16 were constructed to test functional importance of loops and helices. The results suggest that loop 2 is likely to be part of the recognition surface of p18INK4C or p16INK4A for CDK4, and they provide quantitative functional contributions of specific residues. Overall, our results enhance understanding of the structural and functional roles of the loops in INK4 tumor suppressors in particular and in ankyrin-repeat proteins in general. 相似文献
11.
Identification of target genes of the p16INK4A-pRB-E2F pathway 总被引:9,自引:0,他引:9
12.
Pientong C Ekalaksananan T Swadpanich U Kongyingyoes B Kritpetcharat O Yuenyao P Ruckait N 《Acta cytologica》2003,47(4):616-623
OBJECTIVE: To develop an immunocytochemical technique for p16INK4a protein detection in scraped cervical cells for cancer screening. STUDY DESIGN: We took duplicate cervical scrapes from each participant, the first for a Pap smear and the second for p16INK4a protein detection. From a 50-microL cell suspension prepared from the scrape rinsing, a 10-microL aliquot was dropped in a 5-mm-diameter circle on a glass slide, air dried and fixed in 0.1% formal saline (1 hour) and in 95% ethanol (10 minutes). Using the immunocytochemical technique, slides from 30 samples of each Pap diagnosis class were stained sequentially with mouse monoclonal anti-p16INK4a (primary antibody), biotinylated goat antimouse IgG (secondary antibody), horse-radish peroxidase-labelled streptavidin and 3,3'-diaminobenzidine and mixed hydrogen peroxide, then counterstained with hematoxylin. A positive sample had to contain > or = 3 immunoreactive cells. Results were confirmed by western blot analysis of lysates from the remaining 40 microL of each cervical cell suspension. RESULTS: Samples were grouped as control (normal cervical cells), mild dysplasia (ASCUS, LSIL) and high abnormality (HSIL, SCC). Using the immunocytochemical technique, > 95% of the positive (SiHa cells) but 0% of the negative controls (human embryonic lung fibroblast cells) showed immunoreactive cells. All slides displayed a clear background without mucus, and positive cells were stained in both the cytoplasm and nucleus. p16INK4a Protein was detected in 17 of 30 (56.67%) ASCUS and 10 of 30 (33.33%) LSIL and increased with the degree of abnormality to 93.33% (28 of 30) and 96.67% (29 of 30) in the HSIL and SCC group, respectively. Normal cervical cells and degenerated malignant cells were nonimmunoreactive. Western blot analysis confirmed similar positive samples in the low-abnormality group, while the whole high-abnormality group was immunoreactive. A sampling error might have caused the 2 HSIL and 1 SCC sample to be negative using our immunocytochemical technique. CONCLUSION: p16INK4a Protein detection in scraped cervical cells using the immunocytochemical technique correlated with western blot analysis and was nontraumatic and precise. It offers a significant diagnostic adjunct to the Pap test for cervical cancer screening. 相似文献
13.
14.
P Muscarella T J Knobloch A B Ulrich B C Casto N Moniaux U A Wittel W S Melvin P M Pour H Song B Gold S K Batra C M Weghorst 《Gene》2001,278(1-2):235-243
Previous studies have shown that the p16(INK4a) tumor suppressor gene is inactivated in up to 98% of human pancreatic cancer specimens and 83% of oral squamous cell carcinomas. Inactivation of the related p15(INK4b) gene has also been identified in a number of tumors and cell lines, however, its role as an independent tumor suppressor remains to be elucidated. Chemically-induced tumors in the Syrian Golden hamster (Mesocricetus auratus) have been shown to be excellent representative models for the comparative development and progression of a number of human malignancies. The purpose of this study was to determine the importance of the p16(INK4a) and p15(INK4b) genes in two experimental hamster models for human pancreatic and oral carcinogenesis. First, hamster p16(INK4a) and p15(INK4b) cDNAs were cloned and sequenced. The hamster p16(INK4a) cDNA open reading frame (ORF) shares 78%, 80%, and 81% identity with the human, mouse, and rat p16(INK4a) sequences, respectively. Similarly, the hamster p15(INK4b) cDNA ORF shares 82% and 89% sequence identity with human and mouse p15(INK4b), respectively. Second, a deletion analysis of hamster p16(INK4a) and p15(INK4b) genes was performed for several tumorigenic and non-tumorigenic hamster cell lines and revealed that both p16(INK4a) and p15(INK4b) were homozygously deleted in a cheek pouch carcinoma cell line (HCPC) and two pancreatic adenocarcinoma cell lines (KL5B, H2T), but not in tissue matched, non-tumorigenic cheek pouch (POT2) or pancreatic (KL5N) cell lines. These data strongly suggest that homozygous deletion of the p16(INK4a) and p15(INK4b) genes plays a prominent role in hamster pancreatic and oral tumorigenesis, as has been well established in correlative studies in comparable human tumors. Furthermore, this study supports the comparative importance of the hamster pancreatic and cheek pouch models of carcinogenesis in subsequent mechanistic-, therapeutic-, and preventive-based studies aimed at providing important translational data applicable to pancreatic adenocarcinoma and oral squamous cell carcinoma in humans. 相似文献
15.
J Fuxe G Akusj?rvi H M Goike G Roos V P Collins R F Pettersson 《Cell growth & differentiation》2000,11(7):373-384
The genes encoding the cyclin-dependent kinase inhibitors p16INK4A (CDKN2A) and p15INK4B (CDKN2B) are frequently homozygously deleted in a variety of tumor cell lines and primary tumors, including glioblastomas in which 40-50% of primary tumors display homozygous deletions of these two loci. Although the role of p16 as a tumor suppressor has been well documented, it has remained less well studied whether p15 plays a similar growth-suppressing role. Here, we have used replication-defective recombinant adenoviruses to compare the effects of expressing wild-type p16 and p15 in glioma cell lines. After infection, high levels of p16 and p15 were observed in two human glioma cell lines (U251 MG and U373 MG). Both inhibitors were found in complex with CDK4 and CDK6. Expression of p16 and p15 had indistinguishable effects on U251 MG, which has homozygous deletion of CDKN2A and CDKN2B, but a wild-type retinoblastoma (RB) gene. Cells were growth-arrested, showed no increased apoptosis, and displayed a markedly altered cellular morphology and repression of telomerase activity. Transduced cells became enlarged and flattened and expressed senescence-associated beta-galactosidase, thus fulfilling criteria for replicative senescence. In contrast, the growth and morphology of U373 MG, which expresses p16 and p15 endogenously, but undetectable levels of RB protein, were not affected by exogenous overexpression of either inhibitor. Thus, we conclude that overexpression of p15 has a similar ability to inhibit cell proliferation, to cause replicative senescence, and to inhibit telomerase activity as p16 in glioma cells with an intact RB protein pathway. 相似文献
16.
Carter TL Terry P Gottardo N Baker DL Kees UR Watt PM 《Biochemical and biophysical research communications》2004,318(4):852-855
The p16INK4A tumor suppressor gene is frequently disrupted by mutation or deletion in a wide range of cancer types, ranging from leukemia to cancers of the bladder, skin, lung, liver, and spleen. We have previously shown that deletion of at least one copy of the p16INK4A gene is associated with an increased risk of relapse in pediatric leukemia. Our data suggest that hemizygous p16INK4A deletion may be constitutional, conferring susceptibility to leukemia. Confirmation of this association is worthy of a larger study. Data from primary leukemia specimens are also presented here which examined the possibility that the remaining allele of the gene was inactivated by another mechanism such as mutation or was silenced by methylation. These possibilities were formally excluded in a case of hemizygous loss of the p16INK4A gene in leukemia, establishing that in this case the p16INK4A deletion was either semidominant or fully haploinsufficient for relapse susceptibility in this disease. Implementation of high throughput methods such as those used here for detecting hemizygous loss of tumor suppressor genes will become increasingly important for molecular diagnosis of cancer. This is particularly true for the emerging class of tumor suppressor genes where deletion of one allele is sufficient to confer cancer susceptibility or poor prognosis with standard treatment. 相似文献
17.
Choi BY Choi HS Ko K Cho YY Zhu F Kang BS Ermakova SP Ma WY Bode AM Dong Z 《Nature structural & molecular biology》2005,12(8):699-707
Inactivation of the p16(INK4a) tumor suppressor protein is critical for the development of human cancers, including human melanoma. However, the molecular basis of the protein's inhibitory effect on cancer development is not clear. Here we investigated a possible mechanism for p16(INK4a) inhibition of neoplastic transformation and UV-induced skin cancer. We show that p16(INK4a) suppresses the activity of c-Jun N-terminal kinases (JNKs) and that it binds to the glycine-rich loop of the N-terminal domain of JNK3. Although p16(INK4a) does not affect the phosphorylation of JNKs, its interaction with JNK inhibits c-Jun phosphorylation induced by UV exposure. This, in turn, interferes with cell transformation promoted by the H-Ras-JNK-c-Jun-AP-1 signaling axis. 相似文献
18.
Isolation and characterization of p19INK4d, a p16-related inhibitor specific to CDK6 and CDK4. 总被引:6,自引:1,他引:6 下载免费PDF全文
K L Guan C W Jenkins Y Li C L O'Keefe S Noh X Wu M Zariwala A G Matera Y Xiong 《Molecular biology of the cell》1996,7(1):57-70
Cyclin-dependent kinases 4 and 6 are complexed with many small cellular proteins in vivo. We have isolated cDNA sequences, INK4d, encoding a 19-kDa protein that is associated with CDK6 in several hematopoietic cell lines. p19 shares equal similarity and a common ancestor with other identified inhibitors of the p16/INK4 family. p19 interacts with and inhibits the activity of both CDK4 and CDK6 and exhibits no detectable interaction with the other known CDKs. p19 protein is present in both cell nuclei and cytoplasm. The p19 gene has been mapped to chromosome 19p13.2, and the level of its mRNA expression varies widely between different tissues. In contrast to p21 and p27 whose interaction with CDK subunits is dependent on or stimulated by the cyclin subunit, the interaction of p19 and p18 with CDK6 is hindered by the cyclin protein. Binary cyclin D1-p18/p19 or cyclin D1-CDK6 complexes are highly stable and cannot be dissociated by excess amounts of cyclin D1 or p19/p18 proteins, suggesting that p16 inhibitors and D cyclins may interact with CDKs 4 and 6 in a competing or potentially mutually exclusive manner. 相似文献
19.
20.
Wu H Pomeroy SL Ferreira M Teider N Mariani J Nakayama KI Hatakeyama S Tron VA Saltibus LF Spyracopoulos L Leng RP 《Nature medicine》2011,17(3):347-355
The TP53 gene (encoding the p53 tumor suppressor) is rarely mutated, although frequently inactivated, in medulloblastoma and ependymoma. Recent work in mouse models showed that the loss of p53 accelerated the development of medulloblastoma. The mechanism underlying p53 inactivation in human brain tumors is not completely understood. We show that ubiquitination factor E4B (UBE4B), an E3 and E4 ubiquitin ligase, physically interacts with p53 and Hdm2 (also known as Mdm2 in mice). UBE4B promotes p53 polyubiquitination and degradation and inhibits p53-dependent transactivation and apoptosis. Notably, silencing UBE4B expression impairs xenotransplanted tumor growth in a p53-dependent manner and overexpression of UBE4B correlates with decreased expression of p53 in these tumors. We also show that UBE4B overexpression is often associated with amplification of its gene in human brain tumors. Our data indicate that amplification and overexpression of UBE4B represent previously undescribed molecular mechanisms of inactivation of p53 in brain tumors. 相似文献