首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for haplotype inference including full-sib information   总被引:1,自引:0,他引:1       下载免费PDF全文
Ding XD  Simianer H  Zhang Q 《Genetics》2007,177(3):1929-1940
Recent literature has suggested that haplotype inference through close relatives, especially from nuclear families, can be an alternative strategy in determining linkage phase and estimating haplotype frequencies. In the case of no possibility to obtain genotypes for parents, and only full-sib information being used, a new approach is suggested to infer phase and to reconstruct haplotypes. We present a maximum-likelihood method via an expectation-maximization algorithm, called FSHAP, using only full-sib information when parent information is not available. FSHAP can deal with families with an arbitrary number of children, and missing parents or missing genotypes can be handled as well. In a simulation study we compare FSHAP with another existing expectation-maximization (EM)-based approach (FAMHAP), the conditioning approach implemented in FBAT and GENEHUNTER, which is only pedigree based and assumes linkage equilibrium. In most situations, FSHAP has the smallest discrepancy of haplotype frequency estimation and the lowest error rate in haplotype reconstruction, only in some cases FAMHAP yields comparable results. GENEHUNTER produces the largest discrepancy, and FBAT produces the highest error rate in offspring in most situations. Among the methods compared, FSHAP has the highest accuracy in reconstructing the diplotypes of the unavailable parents. Potential limitations of the method, e.g., in analyzing very large haplotypes, are indicated and possible solutions are discussed.  相似文献   

2.

Background

In many studies, researchers may recruit samples consisting of independent trios and unrelated individuals. However, most of the currently available haplotype inference methods do not cope well with these kinds of mixed data sets.

Methods

We propose a general and simple methodology using a mixture of weighted multinomial (MIXMUL) approach that combines separate haplotype information from unrelated individuals and independent trios for haplotype inference to the individual level.

Results

The new MIXMUL procedure improves over existing methods in that it can accurately estimate haplotype frequencies from mixed data sets and output probable haplotype pairs in optimized reconstruction outcomes for all subjects that have contributed to estimation. Simulation results showed that this new MIXMUL procedure competes well with the EM-based method, i.e. FAMHAP, under a few assumed scenarios.

Conclusion

The results showed that MIXMUL can provide accurate estimates similar to those haplotype frequencies obtained from FAMHAP and output the probable haplotype pairs in the most optimal reconstruction outcome for all subjects that have contributed to estimation. If available data consist of combinations of unrelated individuals and independent trios, the MIXMUL procedure can be used to estimate the haplotype frequencies accurately and output the most likely reconstructed haplotype pairs of each subject in the estimation.  相似文献   

3.
In genetic studies the haplotype structure of the regarded population is expected to carry important information. Experimental methods to derive haplotypes, however, are expensive and none of them has yet become standard methodology. On the other hand, maximum likelihood haplotype estimation from unphased individual genotypes may incur inaccuracies. We therefore investigated the relative efficiency of haplotype frequency estimation when nuclear family information is included compared to estimation from experimentally derived haplotypes. Efficiency was measured in terms of variance ratios of the estimates. The variances were derived from the binomial distribution for experimentally derived haplotypes, and from the Fisher information matrix corresponding to the general likelihood function of the haplotype frequency parameters, including family information. We subsequently compared these variance ratios to the variance ratios for the case of estimation from individual genotypes. We found that the information gained from a single child compensates missing phase information to a high degree, resulting in estimates almost as reliable as those derived from observed haplotypes. Thus, if children have already been genotyped for other reasons, it is highly recommendable to include them into the estimation. If child information is not already present, it depends on the number of loci and the haplotype diversity if it is useful to genotype a single child just to reduce phase ambiguity. In general, if the number of loci is less than or equal to three or if the number of haplotypes with a frequency >5% is less than or equal to four, haplotype estimation from individuals is quite good already and the improvement gained from a single child can not compensate the genotyping effort for it. On the other hand, under scenarios with many loci and high haplotype diversity, haplotype frequency estimation from trios can be more efficient than haplotype frequency estimation from individuals also on a per genotype base.  相似文献   

4.
A commonly used tool in disease association studies is the search for discrepancies between the haplotype distribution in the case and control populations. In order to find this discrepancy, the haplotypes frequency in each of the populations is estimated from the genotypes. We present a new method HAPLOFREQ to estimate haplotype frequencies over a short genomic region given the genotypes or haplotypes with missing data or sequencing errors. Our approach incorporates a maximum likelihood model based on a simple random generative model which assumes that the genotypes are independently sampled from the population. We first show that if the phased haplotypes are given, possibly with missing data, we can estimate the frequency of the haplotypes in the population by finding the global optimum of the likelihood function in polynomial time. If the haplotypes are not phased, finding the maximum value of the likelihood function is NP-hard. In this case, we define an alternative likelihood function which can be thought of as a relaxed likelihood function. We show that the maximum relaxed likelihood can be found in polynomial time and that the optimal solution of the relaxed likelihood approaches asymptotically to the haplotype frequencies in the population. In contrast to previous approaches, our algorithms are guaranteed to converge in polynomial time to a global maximum of the different likelihood functions. We compared the performance of our algorithm to the widely used program PHASE, and we found that our estimates are at least 10% more accurate than PHASE and about ten times faster than PHASE. Our techniques involve new algorithms in convex optimization. These algorithms may be of independent interest. Particularly, they may be helpful in other maximum likelihood problems arising from survey sampling.  相似文献   

5.
Knowledge of haplotype phase is valuable for many analysis methods in the study of disease, population, and evolutionary genetics. Considerable research effort has been devoted to the development of statistical and computational methods that infer haplotype phase from genotype data. Although a substantial number of such methods have been developed, they have focused principally on inference from unrelated individuals, and comparisons between methods have been rather limited. Here, we describe the extension of five leading algorithms for phase inference for handling father-mother-child trios. We performed a comprehensive assessment of the methods applied to both trios and to unrelated individuals, with a focus on genomic-scale problems, using both simulated data and data from the HapMap project. The most accurate algorithm was PHASE (v2.1). For this method, the percentages of genotypes whose phase was incorrectly inferred were 0.12%, 0.05%, and 0.16% for trios from simulated data, HapMap Centre d'Etude du Polymorphisme Humain (CEPH) trios, and HapMap Yoruban trios, respectively, and 5.2% and 5.9% for unrelated individuals in simulated data and the HapMap CEPH data, respectively. The other methods considered in this work had comparable but slightly worse error rates. The error rates for trios are similar to the levels of genotyping error and missing data expected. We thus conclude that all the methods considered will provide highly accurate estimates of haplotypes when applied to trio data sets. Running times differ substantially between methods. Although it is one of the slowest methods, PHASE (v2.1) was used to infer haplotypes for the 1 million-SNP HapMap data set. Finally, we evaluated methods of estimating the value of r(2) between a pair of SNPs and concluded that all methods estimated r(2) well when the estimated value was >or=0.8.  相似文献   

6.
MOTIVATION: The search for genetic variants that are linked to complex diseases such as cancer, Parkinson's;, or Alzheimer's; disease, may lead to better treatments. Since haplotypes can serve as proxies for hidden variants, one method of finding the linked variants is to look for case-control associations between the haplotypes and disease. Finding these associations requires a high-quality estimation of the haplotype frequencies in the population. To this end, we present, HaploPool, a method of estimating haplotype frequencies from blocks of consecutive SNPs. RESULTS: HaploPool leverages the efficiency of DNA pools and estimates the population haplotype frequencies from pools of disjoint sets, each containing two or three unrelated individuals. We study the trade-off between pooling efficiency and accuracy of haplotype frequency estimates. For a fixed genotyping budget, HaploPool performs favorably on pools of two individuals as compared with a state-of-the-art non-pooled phasing method, PHASE. Of independent interest, HaploPool can be used to phase non-pooled genotype data with an accuracy approaching that of PHASE. We compared our algorithm to three programs that estimate haplotype frequencies from pooled data. HaploPool is an order of magnitude more efficient (at least six times faster), and considerably more accurate than previous methods. In contrast to previous methods, HaploPool performs well with missing data, genotyping errors and long haplotype blocks (of between 5 and 25 SNPs).  相似文献   

7.
We compared the accuracy of haplotype inferences at a 6 Mb region on chromosome 7 where significant linkage between a brain oscillation phenotype and a cholinergic muscarinic receptor gene was previously reported. Individual haplotype assignments and haplotype frequencies were estimated using 5, 10, and 14 consecutive Illumina single-nucleotide polymorphisms (SNPs) within the 1-LOD unit support interval of the chromosome 7 linkage peak. Initially, haplotypes were constructed incorporating phase information provided by relatives using the pedigree analysis package MERLIN. Population-based haplotypes were inferred using the haplotype estimation software HAPLO.STATS and PHASE, using unrelated individuals. The 14 SNPs within this region exhibited markedly low linkage disequilibrium, and the average D' estimate between SNPs was 0.18 (range: 0.01-0.97). In comparison to the family-based haplotypes calculated in MERLIN, the computational inferences of individual haplotype assignments were most accurate when considering 5 consecutive SNPs, but decayed dramatically when considering 10 or 14 SNPs in both PHASE and HAPLO.STATS. When comparing the two haplotype inference methods, both PHASE and HAPLO.STATS performed poorly. These analyses underscore the difficulties of haplotype estimation in the presence of low linkage disequilibrium and stress the importance of careful consideration of confidence measures when using estimated haplotype frequencies and individual assignments in biomedical research.  相似文献   

8.
Zhou JY  Hu YQ  Lin S  Fung WK 《Human heredity》2009,67(1):1-12
Parent-of-origin effects are important in studying genetic traits. More than 1% of all mammalian genes are believed to show parent-of-origin effects. Some statistical methods may be ineffective or fail to detect linkage or association for a gene with parent-of-origin effects. Based on case-parents trios, the parental-asymmetry test (PAT) is simple and powerful in detecting parent-of-origin effects. However, it is common in practice to collect nuclear families with both parents as well as nuclear families with only one parent. In this paper, when only one parent is available for each family with an arbitrary number of affected children, we firstly develop a new test statistic 1-PAT to test for parent-of-origin effects in the presence of association between an allele at the marker locus under study and a disease gene. Then we extend the PAT to accommodate complete nuclear families each with one or more affected children. Combining families with both parents and families with only one parent, the C-PAT is proposed to detect parent-of-origin effects. The validity of the test statistics is verified by simulation in various scenarios of parameter values. A power study shows that using the additional information from incomplete nuclear families in the analysis greatly improves the power of the tests, compared to that based on only complete nuclear families. Also, utilizing all affected children in each family, the proposed tests have a higher power than when only one affected child from each family is selected. Additional power comparison also demonstrates that the C-PAT is more powerful than a number of other tests for detecting parent-of-origin effects.  相似文献   

9.
Zou G  Pan D  Zhao H 《Genetics》2003,164(3):1161-1173
The identification of genotyping errors is an important issue in mapping complex disease genes. Although it is common practice to genotype multiple markers in a candidate region in genetic studies, the potential benefit of jointly analyzing multiple markers to detect genotyping errors has not been investigated. In this article, we discuss genotyping error detections for a set of tightly linked markers in nuclear families, and the objective is to identify families likely to have genotyping errors at one or more markers. We make use of the fact that recombination is a very unlikely event among these markers. We first show that, with family trios, no extra information can be gained by jointly analyzing markers if no phase information is available, and error detection rates are usually low if Mendelian consistency is used as the only standard for checking errors. However, for nuclear families with more than one child, error detection rates can be greatly increased with the consideration of more markers. Error detection rates also increase with the number of children in each family. Because families displaying Mendelian consistency may still have genotyping errors, we calculate the probability that a family displaying Mendelian consistency has correct genotypes. These probabilities can help identify families that, although showing Mendelian consistency, may have genotyping errors. In addition, we examine the benefit of available haplotype frequencies in the general population on genotyping error detections. We show that both error detection rates and the probability that an observed family displaying Mendelian consistency has correct genotypes can be greatly increased when such additional information is available.  相似文献   

10.
Although many algorithms exist for estimating haplotypes from genotype data, none of them take full account of both the decay of linkage disequilibrium (LD) with distance and the order and spacing of genotyped markers. Here, we describe an algorithm that does take these factors into account, using a flexible model for the decay of LD with distance that can handle both "blocklike" and "nonblocklike" patterns of LD. We compare the accuracy of this approach with a range of other available algorithms in three ways: for reconstruction of randomly paired, molecularly determined male X chromosome haplotypes; for reconstruction of haplotypes obtained from trios in an autosomal region; and for estimation of missing genotypes in 50 autosomal genes that have been completely resequenced in 24 African Americans and 23 individuals of European descent. For the autosomal data sets, our new approach clearly outperforms the best available methods, whereas its accuracy in inferring the X chromosome haplotypes is only slightly superior. For estimation of missing genotypes, our method performed slightly better when the two subsamples were combined than when they were analyzed separately, which illustrates its robustness to population stratification. Our method is implemented in the software package PHASE (v2.1.1), available from the Stephens Lab Web site.  相似文献   

11.
We present methods for imputing data for ungenotyped markers and for inferring haplotype phase in large data sets of unrelated individuals and parent-offspring trios. Our methods make use of known haplotype phase when it is available, and our methods are computationally efficient so that the full information in large reference panels with thousands of individuals is utilized. We demonstrate that substantial gains in imputation accuracy accrue with increasingly large reference panel sizes, particularly when imputing low-frequency variants, and that unphased reference panels can provide highly accurate genotype imputation. We place our methodology in a unified framework that enables the simultaneous use of unphased and phased data from trios and unrelated individuals in a single analysis. For unrelated individuals, our imputation methods produce well-calibrated posterior genotype probabilities and highly accurate allele-frequency estimates. For trios, our haplotype-inference method is four orders of magnitude faster than the gold-standard PHASE program and has excellent accuracy. Our methods enable genotype imputation to be performed with unphased trio or unrelated reference panels, thus accounting for haplotype-phase uncertainty in the reference panel. We present a useful measure of imputation accuracy, allelic R2, and show that this measure can be estimated accurately from posterior genotype probabilities. Our methods are implemented in version 3.0 of the BEAGLE software package.  相似文献   

12.
Effectiveness of computational methods in haplotype prediction   总被引:11,自引:0,他引:11  
Haplotype analysis has been used for narrowing down the location of disease-susceptibility genes and for investigating many population processes. Computational algorithms have been developed to estimate haplotype frequencies and to predict haplotype phases from genotype data for unrelated individuals. However, the accuracy of such computational methods needs to be evaluated before their applications can be advocated. We have experimentally determined the haplotypes at two loci, the N-acetyltransferase 2 gene ( NAT2, 850 bp, n=81) and a 140-kb region on chromosome X ( n=77), each consisting of five single nucleotide polymorphisms (SNPs). We empirically evaluated and compared the accuracy of the subtraction method, the expectation-maximization (EM) method, and the PHASE method in haplotype frequency estimation and in haplotype phase prediction. Where there was near complete linkage disequilibrium (LD) between SNPs (the NAT2 gene), all three methods provided effective and accurate estimates for haplotype frequencies and individual haplotype phases. For a genomic region in which marked LD was not maintained (the chromosome X locus), the computational methods were adequate in estimating overall haplotype frequencies. However, none of the methods was accurate in predicting individual haplotype phases. The EM and the PHASE methods provided better estimates for overall haplotype frequencies than the subtraction method for both genomic regions.  相似文献   

13.

Background

Current methods for haplotype inference without pedigree information assume random mating populations. In animal and plant breeding, however, mating is often not random. A particular form of nonrandom mating occurs when parental individuals of opposite sex originate from distinct populations. In animal breeding this is called crossbreeding and hybridization in plant breeding. In these situations, association between marker and putative gene alleles might differ between the founding populations and origin of alleles should be accounted for in studies which estimate breeding values with marker data. The sequence of alleles from one parent constitutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals.

Results

We introduce a new method for haplotype inference without pedigree that allows nonrandom mating and that can use genotype data of the parental populations and of a crossbred population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The basic idea is that only a subset of the complete set of possible haplotypes is present in the population.

Conclusion

Line origin of approximately 95% of the alleles at heterozygous sites was assessed correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in situations of crossbreeding and that PHASE performed better in situations of random mating.  相似文献   

14.
Parent-of-origin (or imprinting) effects relate to the situation in which traits are influenced by the allele inherited from only one parent and the allele from the other parent has little or no effect. Given SNP genotype data from case-parent trios, the parent of origin of each allele in the offspring can often be deduced unambiguously; however, this is not true when all three individuals are heterozygous. Most existing methods for investigating parent-of-origin effects operate on a SNP-by-SNP basis and either perform some sort of averaging over the possible parental transmissions or else discard ambiguous trios. If the correct parent of origin at a SNP could be determined, this would provide extra information and increase the power for detecting the effects of imprinting. We propose making use of the surrounding SNP information, via haplotype estimation, to improve estimation of parent of origin at a test SNP for case-parent trios, case-mother duos, and case-father duos. This extra information is then used in a multinomial modeling approach for estimating parent-of-origin effects at the test SNP. We show through computer simulations that our approach has increased power over previous approaches, particularly when the data consist only of duos. We apply our method to two real datasets and find a decrease in significance of p values in genomic regions previously thought to possibly harbor imprinting effects, thus weakening the evidence that such effects actually exist in these regions, although some regions retain evidence of significant effects.  相似文献   

15.
DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.  相似文献   

16.
Clarke GM  Cardon LR 《Genetics》2005,171(4):2085-2095
Parent-offspring trios are widely collected for disease gene-mapping studies and are being extensively genotyped as part of the International HapMap Project. With dense maps of markers on trios, the effects of LD and linkage can be separated, allowing estimation of recombination rates in a model-free setting. Here we define a model-free multipoint method on the basis of dense sequence polymorphism data from parent-offspring trios to estimate intermarker recombination rates. We use simulations to show that this method has up to 92% power to detect recombination hotspots of intensity 25 times background over a region of size 10 kb typed at density 1 marker per 2.5 kb and almost 100% power to detect large hotspots of intensity >125 times background over regions of size 10 kb typed with just 1 marker per 5 kb (alpha = 0.05). We found strong agreement at megabase scales between estimates from our method applied to HapMap trio data and estimates from the genetic map. At finer scales, using Centre d'Etude du Polymorphisme Humain (CEPH) pedigree data across a 10-Mb region of chromosome 20, a comparison of population recombination rate estimates obtained from our method with estimates obtained using a coalescent-based approximate-likelihood method implemented in PHASE 2.0 shows detection of the same coldspots and most hotspots: The Spearman rank correlation between the estimates from our method and those from PHASE is 0.58 (p < 2.2(-16)).  相似文献   

17.
Haplotype analyses have become increasingly common in genetic studies of human disease because of their ability to identify unique chromosomal segments likely to harbor disease-predisposing genes. The study of haplotypes is also used to investigate many population processes, such as migration and immigration rates, linkage-disequilibrium strength, and the relatedness of populations. Unfortunately, many haplotype-analysis methods require phase information that can be difficult to obtain from samples of nonhaploid species. There are, however, strategies for estimating haplotype frequencies from unphased diploid genotype data collected on a sample of individuals that make use of the expectation-maximization (EM) algorithm to overcome the missing phase information. The accuracy of such strategies, compared with other phase-determination methods, must be assessed before their use can be advocated. In this study, we consider and explore sources of error between EM-derived haplotype frequency estimates and their population parameters, noting that much of this error is due to sampling error, which is inherent in all studies, even when phase can be determined. In light of this, we focus on the additional error between haplotype frequencies within a sample data set and EM-derived haplotype frequency estimates incurred by the estimation procedure. We assess the accuracy of haplotype frequency estimation as a function of a number of factors, including sample size, number of loci studied, allele frequencies, and locus-specific allelic departures from Hardy-Weinberg and linkage equilibrium. We point out the relative impacts of sampling error and estimation error, calling attention to the pronounced accuracy of EM estimates once sampling error has been accounted for. We also suggest that many factors that may influence accuracy can be assessed empirically within a data set-a fact that can be used to create "diagnostics" that a user can turn to for assessing potential inaccuracies in estimation.  相似文献   

18.
The genotyping of mother–father–child trios is a very useful tool in disease association studies, as trios eliminate population stratification effects and increase the accuracy of haplotype inference. Unfortunately, the use of trios for association studies may reduce power, since it requires the genotyping of three individuals where only four independent haplotypes are involved. We describe here a method for genotyping a trio using two DNA pools, thus reducing the cost of genotyping trios to that of genotyping two individuals. Furthermore, we present extensions to the method that exploit the linkage disequilibrium structure to compensate for missing data and genotyping errors. We evaluated our method on trios from CEPH pedigree 66 of the Coriell Institute. We demonstrate that the error rates in the genotype calls of the proposed protocol are comparable to those of standard genotyping techniques, although the cost is reduced considerably. The approach described is generic and it can be applied to any genotyping platform that achieves a reasonable precision of allele frequency estimates from pools of two individuals. Using this approach, future trio-based association studies may be able to increase the sample size by 50% for the same cost and thereby increase the power to detect associations.  相似文献   

19.
HLA and disease: predictions for HLA haplotype sharing in families.   总被引:8,自引:3,他引:5       下载免费PDF全文
An analysis of published data on the segregation of HLA haplotypes in families with more than one individual affected with insulin-dependent diabetes mellitus or multiple sclerosis yields three conclusions: (1) In families with unaffected parents, affected sib pairs are much more often HLA haplotype identical in sibships with two affected sibs than in sibships with three or four affected sibs (P less than .01). (2) In families with unaffected parents and HLA half-identical affected sibs, well siblings more often receive the single haplotype not found in the affected sibs than is expected by chance (P less than .05). (3) In families with one affected parent, well siblings of affected individuals may share with the affected child a haplotype from the unaffected parent less than 50% of the time (P less than .10). These results are consistent with the premise that in some non-Mendelian, familial, HLA-associated disease more than one gene may contribute to susceptibility to the disorder.  相似文献   

20.
Schouten MT  Williams CK  Haley CS 《Genetics》2005,171(3):1321-1330
Recent studies have highlighted the dangers of using haplotypes reconstructed directly from population data for a fine-scale mapping analysis. Family data may help resolve ambiguity, yet can be costly to obtain. This study is concerned with the following question: How much family data (if any) should be used to facilitate haplotype reconstruction in a population study? We conduct a simulation study to evaluate how changes in family information can affect the accuracy of haplotype frequency estimates and phase reconstruction. To reconstruct haplotypes, we introduce an EM-based algorithm that can efficiently accommodate unrelated individuals, parent-child trios, and arbitrarily large half-sib pedigrees. Simulations are conducted for a diverse set of haplotype frequency distributions, all of which have been previously published in empirical studies. A wide variety of important results regarding the effectiveness of using pedigree data in a population study are presented in a coherent, unified framework. Insight into the different properties of the haplotype frequency distribution that can influence experimental design is provided. We show that a preliminary estimate of the haplotype frequency distribution can be valuable in large population studies with fixed resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号