首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Fine structural changes of testicular interstitial cells of Leydig and secretory cells of seminal vesicles were studied in golden hamsters under different functional states of the pineal gland. Experiments were performed in the reproductive season (summer months). In the hamsters blinded for 8 weeks the testes and the seminal vesicles were markedly atrophic, and the Leydig cells and the secretory cells of seminal vesicles were extremely involuted. By contrast, both types of cells in the pinealectomized or superior cervical ganglionectomized hamsters exhibited cytological features suggestive of an enhanced secretory activity. This study shows that functional activity of Leydig cells as well as secretory cells of seminal vesicles in the hamster may be depressed or augmented by stimulating or inhibiting the pineal antigonadal function, respectively, without performing hypophysectomy or hormonal administration.Dedicated to Professor Shu Yeh on the occasion of his 70th birthday. This study was supported in part by a grant from the National Science Council, the Republic of China  相似文献   

2.
The number of Leydig cells was determined by stereologic procedures in adult Syrian hamsters housed in long days (14L:10D) to maintain testicular activity (active), in short days (5L:19D) for 12-13 wk to induce testicular regression (photoperiod-induced regressed), or in short days for a period of 21 wk or more to allow spontaneous gonadal recrudescence (spontaneously recrudesced). Testes were removed, sliced, fixed, embedded in Epon 812, and observed by bright-field microscopy. Testicular and seminal vesicle weights, plasma testosterone concentration, total Leydig cell volume per testis, and volume of single Leydig cell were greater (p less than 0.01) in active and recrudesced animals than in regressed animals. The density of Leydig cells was greater in the regressed testes, but the total number per testis was not influenced by photoperiod. In Experiment 2, the rate of recruitment of Leydig cells was determined in 5 adult hamsters exposed to long days (active) or 5 hamsters whose testes were regressed by exposure of animals to short days for 13 wk followed by long-day exposure to initiate testicular growth (photoperiod-induced recrudescing). Hamsters were injected for 3 days/wk for 3 wk with tritiated thymidine, 0.5 or 1 microCi/g body weight. Testes were fixed and tissues prepared, as above, and processed for autoradiography. Again, the photoperiod did not influence the number of Leydig cells per testis. Labeling of Leydig cell nuclei revealed that recruitment of new Leydig cells occurred at approximately 1.3% per day in recrudescing testes but also occurred at approximately 0.6% per day in active testes. Without change in the total number of Leydig cells, new Leydig cells were added continually to the existing population in adult hamsters with either recrudescing or active testes.  相似文献   

3.
This study provides quantitative information on the testes of seasonally breeding golden hamsters during active and regressed states of gonadal activity. Seminiferous tubules occupied 92.5% of testis volume in adult gonadally active animals. Leydig cells constituted 1.4% of the testicular volume. The mean volume of an individual Leydig cell was 1092 microns 3, and each testis contained about 25.4 million Leydig cells. The volume of an average Sertoli cell nucleus during stage VII-VIII of the cycle was 502 microns 3. A gram of hamster testis during the active state of gonadal activity contained 44.5 million Sertoli cells, and the entire testis contained approximately 73.8 million Sertoli cells. Testes of the hamsters exposed to short photoperiods for 12-13 wk displayed a 90% reduction in testis volume that was associated with a decrease in the volume of seminiferous tubules (90.8% reduction), tubular lumena (98.8%), interstitium (72.7%), Leydig cell compartment (79.3%), individual Leydig cells (69.7%), Leydig cell nuclei (50.0%), blood vessels (85.5%), macrophages (68.9%), and Sertoli cell nuclei (34.1%). The diameter (61.1%) and the length (36.8%) of the seminiferous tubules were also decreased. Although the number of Leydig cells per testis was significantly lower (p less than 0.02) after short-photoperiod exposure, the number of Sertoli cells per testis remained unchanged. The individual Sertoli cell in gonadally active hamsters accommodated, on the average, 2.27 pre-leptotene spermatocytes, 2.46 pachytene spermatocytes, and 8.17 round spermatids; the corresponding numbers in the regressed testes were 0.96, 0.20, and 0.04, respectively. The striking differences in the testicular structure between the active and regressed states of gonadal activity follow photoperiod-induced changes in endocrine function and suggest that the golden hamster may be used as a model to study structure-function relationships in the testis.  相似文献   

4.
Summary The morphological response of the testis of rats, guinea pigs, Syrian hamsters and mice to treatment with the cytotoxin ethane dimethanesulphonate was examined using light and electron microscopy. One to two days after a single administration of ethane dimethanesulphonate to adult rats, guinea pigs, and hamsters, the Leydig cells showed marked ultrastructural alterations suggestive of degeneration and cell death. The former alterations included karyopyknosis, cytoplasmic vesiculation and accumulation of lipid inclusions and large lipofuscin bodies. Fragments of necrotic Leydig cells were often engulfed by the interstitial tissue macrophages. The morphology of the seminiferous epithelium of these three species was unchanged from the morphology observed in vehicle-injected control animals. In contrast, multiple injections of ethane dimethanesulphonate given to mice produced no ultrastructural alterations to Leydig cells yet the seminiferous epithelium exhibited disruption of spermatogenesis. Although the Leydig cells of the mouse appear resistant to ethane dimethanesulphonate, this agent exerts a selective cytotoxic action upon Leydig cells of the rat, guinea pig and hamster thus identifying ethane dimethanesulphonate as a useful chemical for future endocrine and physiological studies of testicular function in three common laboratory species.  相似文献   

5.
When blinded, golden Syrian hamsters undergo marked gonadal atrophy. This phenomenon is prevented by pinealectomy. The mechanisms involved in this pineal-mediated response were investigated through either the transplantation of pituitary homografts or treatment of blinded, male hamsters with exogenous prolactin. It was found that anterior pituitary homografts placed beneath the kidney capsule on the day of bilateral optic enucleation partially maintained testicular and accessory organ weights. Serum prolactin levels were reduced in blinded animals below that of intact controls. On the other hand, blinded hamsters bearing anterior pituitary homografts showed serum prolactin levels comparable to those of intact controls. In other experiments, the injection of either 3.2 or 6.4 I.U. of ovine prolactin/hamster/ day for a period up to seven weeks partially inhibited the atrophy of testes and accessory organ weights in blinded hamsters. These data suggest a possible role for prolactin in the pineal-mediated atrophic response to light deprivation.  相似文献   

6.
Effects of pure human follicle-stimulating hormone (hFSH) and ovine luteinizing hormone (oLH) on testicular function were investigated in long-term hypophysectomized or photoinhibited Djungarian hamsters. hFSH (5 IU) or oLH (5 micrograms) or a combination of FSH and LH (5 IU and 5 micrograms, respectively) were injected s.c. twice daily for 7 days to hypophysectomized and photoinhibited hamsters. Other photoinhibited hamsters were treated for 14 and 21 days with FSH and LH (3 IU and 3 micrograms, respectively) in a similar way. LH alone had little, if any, effect on testicular weights; FSH, when injected alone or in combination with LH (FSH/LH), caused a significant increase in testes weights at each time point. On the other hand, LH or FSH/LH, but not FSH alone, caused a significant increase in the accessory organ weights. FSH had no effect on intratesticular testosterone (T) or on 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity but enhanced the in vitro response of interstitial cells to hCG. LH and FSH/LH had pronounced effects on intratesticular T, 3 beta-HSD activity, and in vitro response of interstitial cells to human chorionic gonadotropin. Treatment with FSH or FSH/LH caused regrowth of the testis and restoration of tubular lumen and tubular diameter and restored complete spermatogenesis. However, LH had little effect on spermatogenesis in spite of increased intratesticular and peripheral T levels. These results indicate that although LH can cause a full redifferentiation of Leydig cells in photoinhibited hamsters, it has only minor effects on tubular function. On the other hand, FSH alone induces full restoration of tubular function in these animals and has no direct effect on Leydig cell steroidogenesis, but may enhance the Leydig cell responsiveness to LH.  相似文献   

7.
Summary Blinding young adult female hamsters was followed by functional involution of the ovaries and uteri and by the cessation of cyclic vaginal phenomena. Light deprivation was also accompanied by elevated plasma and pituitary levels of luteinizing hormone and depressed levels of prolactin in both the blood and the pituitary gland. Only one of 15 blinded hamsters became pregnant when they were exposed to fertile males for 30 days. Both pinealectomy or chronic melatonin treatment (1 mg melatonin implanted subcutaneously per week in beeswax) prevented the changes in the reproductive organs and in pituitary hormone levels attendant on light-deprivation. Both treatment also returned vaginal cycles to normal and restored plasma prolactin titers. Unlike hamsters that were blinded only, light deprived hamsters that were either pinealectomized or melatonin treated were capable of reproducing when they were caged with fertile males. The reproductive capability (i.e., percent of animals that become pregnant and the sizes of their litters) of these animals was equivalent to that of the untreated control hamsters. This is the first report that chronic melatonin treatment restores fertility in blinded female hamsters.Supported by Grant GB-43233X from the National Science Foundation  相似文献   

8.
The influence of the adrenal gland and photoperiod on the adult female hamster estrous cycle was investigated. Hamsters were exposed to 14 hours of light per day and estrous cycles were monitored. Normal cycles were characterized by a copious discharge every 4th day. Hamsters were then adrenalectomized, adrenalectomized and blinded, or blinded only. Adrenalectomized/blinded hamsters were given a .2% sodium saccharine-1%(w/v) sodium chloride solution to drink which promotes long-term survival in most adrenalectomized hamsters. With blinding alone, it took from 18 to 62 days for cessation of estrous cycles. Cycles ceased in a mean of 36.2 days in blinded/adrenalectomized hamsters. After adrenalectomy only, 3 hamsters continued to show 4-day estrous cycles for at least 9 weeks in response to the long days. 6 adrenalectomized animals died due to adrenal insufficiency but displayed several 4-day estrous cycles. It is suggested that in the hamster, adrenal hormones are nonessential for the long-term expression of estrous cyclicity. However, further research is needed to determine whether adrenal hormones are capable of modulating photoperiodic time measurement or ovarian regression.  相似文献   

9.
Adult mice, rats and hamsters were injected with 0 or 0.3 IU hCG/g BW, 24 h before sacrifice. Basal LH receptor concentration was highest in rats and lowest in hamsters (rats greater than mice greater than hamsters). Injection of hCG caused LH receptor down-regulation in rats and mice, and up-regulation in hamsters. Basal plasma progesterone was highest in hamsters and lowest in rats (hamsters greater than mice greater than rats), however, hCG increased plasma progesterone levels in mice and rats, but not in hamsters. Mice had much higher plasma and testicular testosterone levels than other species, but hCG did not induce a relatively more dramatic increase in any species. When testes fragments were incubated with 0 or 12.5 mIU hCG/ml for 4 h, hCG increased media progesterone levels in rats and control mice, but not in hamsters and hCG-injected mice. Also, hCG elevated media testosterone levels in control but not in hCG-injected animals. Furthermore, addition of hCG in vitro partially prevented the elevation of media testosterone induced by in vivo hCG. The present results indicate that the mechanisms for the transduction of the gonadotropic signal by the Leydig cells are species-defined.  相似文献   

10.
11.
Summary Ethane dimethanesulphonate (EDS) was used as a specific cytotoxin to eliminate the Leydig cell population of the adult rat testis. Ultrastructural, morphometric and serum gonadotrophin and testosterone analysis was used to study the response of the intertubular tissue of the testis from 1 day to 10 weeks after EDS treatment. In control animals, the testis contained approximately 28 million Leydig cells and 8 million macrophages. Three to seven days after EDS treatment, Leydig cells were absent and serum testosterone was undetectable. Macrophage numbers increased three-fold by 3 days and returned to pretreatment values thereafter. At 2 and 3 weeks post-EDS, foetal-type Leydig cells (1–2 million per testis) appeared in proximity to perivascular and peritubular tissues, a feature also observed at 4 weeks when numerous such cells (15 million per testis) formed prominent clusters in perivascular and peritubular locations. Between 6 and 10 weeks after EDS treatment, the foetal-type Leydig cells were transformed morphologically into adult-type Leydig cells, they occupied central intertubular positions and their numbers were restored to pretreatment values. Regeneration of Leydig cells was reflected by elevated serum testosterone levels which returned towards the normal range. The results demonstrate the regenerative capacity of the testicular intertubular tissue and indicate a dual site of origin of Leydig cells which initially resemble foetal-type Leydig cells prior to establishing the adult-type Leydig cell population. The morphological pattern of Leydig cell regeneration suggests that in addition to gonadotrophic stimulation, local testicular factors from the seminiferous tubules may stimulate Leydig cell growth.  相似文献   

12.
Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, assembly and transport, and which play critical roles in the regulation of cell growth, survival and differentiation. We set out to test the hypothesis that HSP27 protein is expressed in the human testes and its expression varies with the state of spermatogenesis. HSP27 expression was examined in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) using immunofluorescent methods. The biopsies were obtained from patients undergoing investigations for infertility. The seminiferous epithelium of the human testes showing normal spermatogenesis had a cell type-specific expression of HSP27. HSP27 expression was strong in the cytoplasm of the Sertoli cells, spermatogonia, and Leydig cells. Alternatively, the expression was moderate in the spermatocytes, weak in the spermatids and absent in the spermatozoa. In testes showing maturation arrest, HSP27 expression was strong in the Sertoli cells, weak in the spermatogonia, and spermatocytes. It was absent in the spermatids and Leydig cells. In Sertoli cell only syndrome, HSP27 expression was strong in the Sertoli cells and absent in the Leydig cells. We report for the first time the expression patterns of HSP27 in the human testes and show differential expression during normal spermatogenesis, indicating a possible role in this process. The altered expression of this protein in testes showing abnormal spermatogenesis may be related to the pathogenesis of male infertility.  相似文献   

13.
The cellular and subcellular distribution of sterol carrier protein 2 (SCP2; nsL-TP) was reinvestigated in rat testicular cells by Western blotting and immunocytochemistry, using the affinity purified antibody against rat liver SCP2. Western blot analysis revealed high levels of the protein in the somatic cells of the testis, e.g., Leydig and Sertoli cells whereas it could not be detected in germ cells. This cellular localization of SCP2 was confirmed by Northern blotting. Immunocytochemical techniques revealed that in Leydig cells, immunoreactive proteins were concentrated in peroxisomes. Although SCP2 was also detected in Sertoli cells, a specific subcellular localization could not be shown. SCP2 was absent from germ cells. Analysis of subcellular fractions of Leydig cells showed that SCP2 is membrane bound without detectable amounts in the cytosolic fraction. These results are at variance with data published previously which suggested that in Leydig cells a substantial amount of SCP2 was present in the cytosol and that the distribution between membranes and cytosol was regulated by luteinizing hormone. The present data raise the question in what way SCP2 is involved in cholesterol transport between membranes in steroidogenic cells but also in non-steroidogenic cells.  相似文献   

14.
Summary Although current physiological findings imply that the mammalian pineal organ liberates an antigonadal agent, microscopic examinations of this organ have afforded little information regarding the possible storage and release of such a substance. Since it is known that light deprivation for six weeks results in pineal-induced atrophy of certain reproductive organs in adult golden hamsters, one might expect that any morphological manifestations of this activity in the pineal organ would be enhanced in hamsters which had heen deprived of light for that length of time. A comparison at the ultrastructural level of pineal glands from normal and experimentally blinded hamsters revealed that pineal cells from the blinded animals exhibited a greater number of vesicles and contained complex membranous whorls. The possible significance of the vesicles and lamellar whorls is discussed in terms of similar structures found in other tissues.A feature common to pineal tissue of both the normal and experimental hamsters was the apparent cellular segregation of two morphologically distinct types of mitochondria. Pinealocytes containing small, cristaform mitochondria were designated as P1 cells; those containing larger mitochondria characterized by a dense, plexiform array of cristae were designated as P2 cells.Supported by A. D. Williams 3558, Medical College of Virginia, and National Institutes of Health 5FI-GM-31, 981-02.The author is grateful to Dr. Hugo R. Seibel of the Department of Anatomy at the Medical College of Virginia for assistance with the surgical procedures employed in this study.  相似文献   

15.
Summary Calcium and intracellular Ca2+-binding proteins are possibly involved in hormone production and spermatogenesis in rat testis. Parvalbumin, calbindin D-28K, S-100 proteins and calmodulin were localized in the Leydig cells, which are sites of testosterone synthesis. Only the appearance of parvalbumin-immunoreactivity is closely correlated to testosterone production during development of the testes. Calbindin D-28K-immunoreactivity persisted in foetal-type Leydig cells and in adult-type Leydig cells at all stages of development. S-100-immunoreactivity was low during all foetal stages, absent between birth and puberty, and increased thereafter. Calmodulin staining is most prominent in the cytoplasm of developing spermatocytes and of maturing spermatids. All four proteins co-exist in the seminiferous tubules. The distinct localization and developmental appearance of these proteins suggests different regulatory roles in Leydig cell function and spermatogenesis.  相似文献   

16.
J Vriend  F P Gibbs 《Life sciences》1984,34(7):617-623
Administration of melatonin via the drinking water prevented the gonadal involution and the thyroid hormone depletion normally observed in blinded hamsters. Ten weeks after blinding male hamsters had plasma thyroxin levels that were 57% of controls and testis weights that were 8% of controls. Administration of melatonin (80 microgram melatonin/ml drinking water) to blinded hamsters restored thyroxin levels to 86% of controls and testis weights to 93% of controls. Dose response data showed that as little as 1.25 microgram (approximately 10 microgram/hamster/day) produced a significant effect on testis weight, whereas the lowest dose required to produce a significant increase in thyroxin levels was 10 microgram/ml. The coincidence of counter-antigonadal and counter-antithyroid actions of melatonin suggests a single site of action.  相似文献   

17.
Leydig cells in the adult rat testis differentiate during the neonatal-prepubertal period. However, the stimulus for the initiation of their differentiation is still not clear. In the present study our objectives were to test the effects of thyroid hormone and LH on the initiation of precursor cell differentiation into Leydig cells in the prepubertal rat testis. Four groups of Sprague-Dawley rats were used. All treatments began at postnatal Day 1. Rats in groups I, II, and III received daily s.c. injections of saline (200 microl, controls), triiodothyronine (T(3), 50 microg/kg body weight, hyperthyroid), and LH (ovine LH 10 microg/rat/day), respectively. Rats in group IV were made hypothyroid from postnatal Day 1 by adding 0.1% propylthiouracil (PTU) to their mother's drinking water. Testes of rats were collected at 7, 8, 9, 10, 11, 12, 16, and 21 days of age, fixed in Bouin's solution, and embedded in paraffin for immunocytochemical studies. Immunoexpression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and LH receptors (LHR) in testicular interstitial cells (other than the fetal Leydig cells) was observed using the avidin-biotin method. In control rats, out of all spindle-shaped cell types in the testis interstitium, only the peritubular mesenchymal cells showed positive immunolabeling for 3beta-HSD, beginning from the postnatal Day 11. However, positive immunolabeling for LHR was first detected in these cells at Day 12, i.e., after acquiring the steroidogenic enzyme activity. In T(3)-treated rats 3beta-HSD positive spindle-shaped cells were first observed at Day 9 (i.e., 2 days earlier than controls), and LHR-positive cells were first observed on Day 11 (2 days later than obtaining 3beta-HSD immunoactivity); they were exclusively the peritubular mesenchymal cells. The 3beta-HSD- and LHR-positive spindle-shaped cells were absent in the testis interstitium of LH-injected rats from Days 7 through 12 but were present at postnatal Day 16. In addition, more fetal Leydig cell clusters and fetal Leydig cells in mitosis were present in LH-treated rats compared to rats in all other treatment groups. Following their first detection, the number of positive cells for each protein continued to increase at each subsequent age in controls, T(3)-, and LH-injected groups. In PTU rats, 3beta-HSD and LHR-positive spindle-shaped cells were absent throughout the experimental period. From these observations, it is possible to suggest the following regarding the developing rat testis interstitium. 1) The precursor cells for the adult generation of Leydig cells in the postnatal rat testis are the peritubular mesenchymal cells. 2) Luteinizing hormone does not initiate the onset of mesenchymal cell differentiation into Leydig cells, instead it delays this process. However, daily LH treatment causes mitosis in fetal Leydig cells and increase in fetal Leydig cell clusters. 3) Thyroid hormone is critical to initiate the onset of mesenchymal cell differentiation into adult Leydig cells.  相似文献   

18.
Golden hamster testes regress after short day exposure. The present study asks: 1) are Leydig cell numbers depleted during short days, and 2) if so, how are they replenished during recrudescence. Control hamsters were shown 14 h of light and 10 h of dark (LD 14:10) for 10 weeks (n = 12). Testicular regression was induced by LD 6:18 for 10 weeks (n = 4), and recrudescence by switching regressed hamsters to LD 14:10 for 3 and 5 weeks (n = 8 for each group). All hamsters were injected with [3H]thymidine [3 microCi/gm body wt., intraperitoneally (i.p.)] 1 h or 2 weeks before sacrifice. Leydig cell number per testis was determined by stereological analysis of sections of perfusion-fixed testes, and labeling indices were determined by autoradiography. Leydig cell numbers were reduced significantly from 18.2 X 10(6) in control to 9.0 X 10(6) in regressed testes (p less than 0.05); then increased to 14.0 X 10(6) and 17.9 X 10(6) in 3- and 5-week recrudesced hamsters. The labeling index was nondetectable (n.d.) for regressed hamsters. In control and recrudescing hamsters the labeling index was measured at two times (t1 = 1 h vs. t2 = 2 weeks post-injection): in controls, t1 = 0.22 +/- 0.15% (mean +/- SEM) vs. t2 = 0.28 +/- 0.22%; in 1 week recrudesced, n.d. vs. 1.92 +/- 0.77% (p less than 0.05); at 3 wk, n.d. vs. 4.58 +/- 1.74% (p less than 0.05); at 5 weeks, 1.92 +/- 0.61% vs. 2.25 +/- 0.59%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Testes from adult and prepubertal mice lacking the Desert hedgehog (DHH:) gene were examined in order to describe further the role of Dhh in spermatogenesis because, in a previous report, DHH:-null male mice were shown to be sterile. Dhh is a signaling molecule expressed by Sertoli cells. Its receptor, patched (Ptc), has been previously localized to Leydig cells and is herein described as being localized also to peritubular cells. Two phenotypes of the mice were observed: masculinized (7.5% of DHH:-null males) and feminized (92.5%), both of which displayed abnormal peritubular tissue and severely restricted spermatogenesis. Testes from adult feminized animals lacked adult-type Leydig cells and displayed numerous undifferentiated fibroblastic cells in the interstitium that produced abundant collagen. The basal lamina, normally present between the myoid cells and Sertoli cells, was focally absent. We speculate that the abnormal basal lamina contributed to other characteristics, such as extracordal gonocytes, apolar Sertoli cells, and anastomotic seminiferous tubules. The two DHH:-null phenotypes described have common peritubular cell defects that may be indicative of the essential role of peritubular cells in development of tubular morphology, the differentiation of Leydig cells, and the ultimate support of spermatogenesis.  相似文献   

20.
Adult hamsters exposed to short photoperiods show a marked atrophy of their internal reproductive organs, including a reduction in size, though not number of Leydig cells. Transforming growth factor-β1 (TGF-β1) is involved in the regulation of growth and proliferation of different cell types. The aim of the present study was to examine the influence of photoperiod on the protein and gene expression of TGF-β1 and its receptors as well as gene expression of p15. The effect of TGF-β1 on the expression of p15 in purified Leydig cells from regressed and non-regressed hamster testes was also tested. Protein and gene expression of TGF-β1 was detected in both regressed and non-regressed testes. In contrast to the activin receptor-like kinase 1 (ALK-1), the TGF-β1, the activin receptor-like kinase 5 (ALK-5) and the co-receptor endoglin all showed a greater basal expression in regressed than non-regressed hamster testes. Melatonin induced the TGF-β1 mRNA expression in purified Leydig cells from non-regressed testes. The p15 mRNA level was greater in regressed than non-regressed testes. A high dose of TGF-β1 during a short incubation period increased the p15 mRNA level in Leydig cells from non-regressed testes. ALK-5 and mitogen-activated protein kinase (MAPK) p38 might have played a role in this process. In regressed hamster testes, the p15 mRNA level increased due to a low dose of TGF-β1 after short incubation periods and to a high dose after longer incubation periods; in both instances, ALK-5, ERK 1/2 and p38 were involved. Collectively, these results suggest that the alterations in p15 expression, mediated by MAPK, are involved in the shift between the active and inactive states in hamster Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号