首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs) constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio) and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs). We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs) in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.  相似文献   

2.
Wei B  Han XY  Qi CL  Zhang S  Zheng ZH  Huang Y  Chen TF  Wei HB 《PloS one》2012,7(6):e39069
Although some studies described the characteristics of colon cancer stem cells (CSCs) and the role of endothelial progenitor cells (EPCs) in neovascularization, it is still controversial whether an interaction exists or not between CSCs and EPCs. In the present study, HCT116 and HT29 sphere models, which are known to be the cells enriching CSCs, were established to investigate the roles of this interaction in development and metastasis of colon cancer. Compared with their parental counterparts, spheroid cells demonstrated higher capacity of invasion, higher tumorigenic and metastatic potential. Then the in vitro and in vivo relationship between CSCs and EPCs were studied by using capillary tube formation assay and xenograft models. Our results showed that spheroid cells could promote the proliferation, migration and tube formation of EPCs through secretion of vascular endothelial growth factor (VEGF). Meanwhile, the EPCs could increase tumorigenic capacity of spheroid cells through angiogenesis. Furthermore, higher microvessel density was detected in the area enriching cancer stem cells in human colon cancer tissue. Our findings indicate that spheroid cells possess the characteristics of cancer stem cells, and the coaction of CSCs and EPCs may play an important role in the development of colon cancer.  相似文献   

3.
Tumors contain a vastly complicated cellular network that relies on local communication to execute malignant programs. The molecular cues that are involved in cell-cell adhesion orchestrate large-scale tumor behaviors such as proliferation and invasion. We have recently begun to appreciate that many tumors contain a high degree of cellular heterogeneity and are organized in a cellular hierarchy, with a cancer stem cell (CSC) population identified at the apex in multiple cancer types. CSCs reside in unique microenvironments or niches that are responsible for directing their behavior through cellular interactions between CSCs and stromal cells, generating a malignant social network. Identifying cell-cell adhesion mechanisms in this network has implications for the basic understanding of tumorigenesis and the development of more effective therapies. In this review, we will discuss our current understanding of cell-cell adhesion mechanisms used by CSCs and how these local interactions have global consequences for tumor biology.  相似文献   

4.
Tumors contain a vastly complicated cellular network that relies on local communication to execute malignant programs. The molecular cues that are involved in cell-cell adhesion orchestrate large-scale tumor behaviors such as proliferation and invasion. We have recently begun to appreciate that many tumors contain a high degree of cellular heterogeneity and are organized in a cellular hierarchy, with a cancer stem cell (CSC) population identified at the apex in multiple cancer types. CSCs reside in unique microenvironments or niches that are responsible for directing their behavior through cellular interactions between CSCs and stromal cells, generating a malignant social network. Identifying cell-cell adhesion mechanisms in this network has implications for the basic understanding of tumorigenesis and the development of more effective therapies. In this review, we will discuss our current understanding of cell-cell adhesion mechanisms used by CSCs and how these local interactions have global consequences for tumor biology.  相似文献   

5.
Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs), but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1) was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.  相似文献   

6.
Akunuru S  Palumbo J  Zhai QJ  Zheng Y 《PloS one》2011,6(2):e16951
The cancer stem cell (CSC) theory predicts that a small fraction of cancer cells possess unique self-renewal activity and mediate tumor initiation and propagation. However, the molecular mechanisms involved in CSC regulation remains unclear, impinging on effective targeting of CSCs in cancer therapy. Here we have investigated the hypothesis that Rac1, a Rho GTPase implicated in cancer cell proliferation and invasion, is critical for tumor initiation and metastasis of human non-small cell lung adenocarcinoma (NSCLA). Rac1 knockdown by shRNA suppressed the tumorigenic activities of human NSCLA cell lines and primary patient NSCLA specimens, including effects on invasion, proliferation, anchorage-independent growth, sphere formation and lung colonization. Isolated side population (SP) cells representing putative CSCs from human NSCLA cells contained elevated levels of Rac1-GTP, enhanced in vitro migration, invasion, increased in vivo tumor initiating and lung colonizing activities in xenografted mice. However, CSC activity was also detected within the non-SP population, suggesting the importance of therapeutic targeting of all cells within a tumor. Further, pharmacological or shRNA targeting of Rac1 inhibited the tumorigenic activities of both SP and non-SP NSCLA cells. These studies indicate that Rac1 represents a useful target in NSCLA, and its blockade may have therapeutic value in suppressing CSC proliferation and metastasis.  相似文献   

7.
肿瘤微环境是一个复杂的组织样结构,具有丰富的表型和功能异质性。不同浓度的趋化因子、细胞因子与组成肿瘤微环境的细胞间相互作用,可激活上皮–间质转化(epithelial-mesenchymal transition,EMT)相关的信号通路及控制肿瘤干细胞(cancer stem cells,CSCs)的生成。EMT的异常激活会促进肿瘤细胞的可塑性,赋予上皮细胞间充质特性,并与癌细胞获得侵袭性的特征密切相关。CSCs是一类具有高致瘤潜能的细胞群,其能很容易地适应周围环境的变化,与肿瘤内其他细胞相比具有较强的抗药性。该文对肿瘤微环境中EMT与CSC的作用机制及相关信号通路的研究进展进行综述。  相似文献   

8.
Normal cells mainly rely on oxidative phosphorylation as an effective energy source in the presence of oxygen. In contrast, most cancer cells use less efficient glycolysis to produce ATP and essential biomolecules. Cancer cells gain the characteristics of metabolic adaptation by reprogramming their metabolic mechanisms to meet the needs of rapid tumor growth. A subset of cancer cells with stem characteristics and the ability to regenerate exist throughout the tumor and are therefore called cancer stem cells (CSCs). New evidence indicates that CSCs have different metabolic phenotypes compared with differentiated cancer cells. CSCs can dynamically transform their metabolic state to favor glycolysis or oxidative metabolism. The mechanism of the metabolic plasticity of CSCs has not been fully elucidated, and existing evidence indicates that the metabolic phenotype of cancer cells is closely related to the tumor microenvironment. Targeting CSC metabolism may provide new and effective methods for the treatment of tumors. In this review, we summarize the metabolic characteristics of cancer cells and CSCs and the mechanisms of the metabolic interplay between the tumor microenvironment and CSCs, and discuss the clinical implications of targeting CSC metabolism.  相似文献   

9.
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.  相似文献   

10.
Epithelial-mesenchymal transition(EMT) has been linked with aggressive tumor biology and therapy resistance. It plays central role not only in the generation of cancer stem cells(CSCs) but also direct them across the multiple organ systems to promote tumor recurrence and metastasis. CSCs are reported to express stem cell genes as well as specific cell surfacemarkers and allow aberrant differentiation of progenies.It facilitates cancer cells to leave primary tumor, acquire migratory characteristics, grow into new environment and develop radio-chemo-resistance. Based on the current information, present review discusses and summarizes the recent advancements on the molecular mechanisms that derive epithelial plasticity and its major role in generating a subset of tumor cells with stemness properties and pathophysiological spread of tumor. This paper further highlights the critical need to examine the regulation of EMT and CSC pathways in identifying the novel probable therapeutic targets.These improved therapeutic strategies based on the co-administration of inhibitors of EMT, CSCs as well as differentiated tumor cells may provide improved antineoplastic response with no tumor relapse.  相似文献   

11.
Cancer stem cells (CSCs) are the main cause of tumor growth, invasion, metastasis and recurrence. Recently, CSCs have been extensively studied to identify CSC-specific surface markers as well as signaling pathways that play key roles in CSCs self-renewal. The involvement of CSCs in the pathogenesis of gastrointestinal (GI) cancers also highlights these cells as a priority target for therapy. The diagnosis, prognosis and treatment of GI cancer have always been a focus of attention. Therefore, the potential application of CSCs in GI cancers is receiving increasing attention. This review summarizes the role of CSCs in GI cancers, focusing on esophageal cancer, gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer. In addition, we propose CSCs as potential targets and therapeutic strategies for the effective treatment of GI cancers, which may provide better guidance for clinical treatment of GI cancers.  相似文献   

12.
《Autophagy》2013,9(12):1853-1855
Malignant tissue contains a rare population of multi-potent cells known as cancer stem-like cells (CSCs). Autophagy is an important mechanism in cancer cell survival and tumor growth; it can both suppress malignant transformation and promote the growth of established cancers. However, the molecular mechanisms underlying the tumor-promoting and tumor-suppressing functions of autophagy in CSCs are not understood. Our work demonstrates that a prosurvival autophagic pathway is critical for breast CSC maintenance. Notably, we provide new evidence for the existence of two separate, context-dependent, autophagic programs that are regulated in opposite ways by BECN1.  相似文献   

13.
Cancer stem cells (CSCs) or tumor initiating cells were identified and characterized as a unique subpopulation with stem cell features in many types of cancer. Current CSC studies provide novel insights regarding tumor initiation, progression, angiogenesis, resistance to therapy and interplay with the tumor micro-environment. A cancer stem cell niche has been proposed based on these findings. The niche provides the soil for CSC self-renewal and maintenance, stimulating essential signaling pathways in CSCs and leading to secretion of factors that promote angiogenesis and long term growth of CSCs. We present evidence which has emerged over the past 5 years indicating interaction of CSCs with angiogenesis in the proposed "vascular niche". Based on these findings, targeting the "cancer stem cell niche" by combining an individualized anti-CSC approach with treatment of their microenvironment may represent a novel therapeutic strategy against solid tumor systems.  相似文献   

14.
Growing evidence suggests that myeloid-derived suppressor cells (MDSCs), which have been named "immature myeloid cells" or "myeloid suppressor cells" (MSCs), play a critical role during the progression of cancer in tumor-bearing mice and cancer patients. As their name implies, these cells are derived from bone marrow and have a tremendous potential to suppress immune responses. Recent studies indicated that these cells also have a crucial role in tumor progression. MDSCs can directly incorporate into tumor endothelium.They secret many pro-angiogenic factors as well. In addition, they play an essential role in cancer invasion and metastasis through inducing the production of matrix metalloproteinases (MMPs), chemoattractants and creating a pre-metastatic environment. Increasing evidence supports the idea that cancer stem cells (CSCs) are responsible for tumorigenesis, resistance to therapies, invasion and metastasis.Here, we hypothesize that CSCs may "hijack" MDSCs for use as alternative niche cells, leading to the maintenance of stemness and enhanced chemo- and radio-therapy resistance. The countermeasure that directly targets to MDSCs may be useful for against angiogenesis and preventing cancer from invasion and metastasis. Therefore, the study of MDSCs is important to understand tumor progression and to enhance the therapeutic efficacy against cancer.  相似文献   

15.
肿瘤干细胞是存在于肿瘤组织中的具有自我更新、增殖、分化的部分细胞群,对肿瘤的发生、发展有十分重要的作用. 肿瘤干细胞特异的表面分子及其异常活化的信号通路,是其区别于其他肿瘤细胞的特性.寻找和鉴定特异的肿瘤干细胞的表面标志物,从而识别肿瘤组织中的肿瘤干细胞,并进行相关信号调控机制研究,是肿瘤早期诊断及肿瘤干细胞靶向治疗的关键. 本文简要概述了肿瘤干细胞相关的表面标志物及信号通路的研究进展,旨在为进一步开展针对肿瘤干细胞的抗体靶向治疗提供新思路.  相似文献   

16.
Lung cancer is the most common solid tumor and the leading cause of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) represents the major histological subtype and accounts for about 80 % cases of lung cancer cases. Recently, lncRNA lncTCF7 was identified, which is highly expressed in hepatocellular carcinoma (HCC) tumors and liver cancer stem cells (CSCs). However, the role of lnTCF7 in NSCLC remains largely unknown. In this study, Gain- and loss-of-function studies demonstrated the critical role of lncTCF7 in promoting invasion and self-renewal in NSCLC cells. We showed that lncTCF7 increased slug expression to promote the invasive capability of NSCLC cells and upregulated EpCAM expression to promote the self-renewal. Collectively, these findings provide new insights into the potential role of lncTCF7 upregulation in NSCLC metastasis and suggest a promising potential to suppress lncTCF7 for NSCLC patients.  相似文献   

17.
Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.  相似文献   

18.
Unlike other normal cells, a subpopulation of cells often termed as “stem cells” are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.  相似文献   

19.
Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent DiI-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average experimental time for this model is 7 d. Our protocol offers a remarkable opportunity to study molecular mechanisms of hypoxia-induced cancer metastasis.  相似文献   

20.
Chen T  Yang K  Yu J  Meng W  Yuan D  Bi F  Liu F  Liu J  Dai B  Chen X  Wang F  Zeng F  Xu H  Hu J  Mo X 《Cell research》2012,22(1):248-258
Gastric cancer is the fourth most common cancer worldwide, with a high rate of death and low 5-year survival rate. To date, there is a lack of efficient therapeutic protocols for gastric cancer. Recent studies suggest that cancer stem cells (CSCs) are responsible for tumor initiation, invasion, metastasis, and resistance to anticancer therapies. Thus, therapies that target gastric CSCs are attractive. However, CSCs in human gastric adenocarcinoma (GAC) have not been described. Here, we identify CSCs in tumor tissues and peripheral blood from GAC patients. CSCs of human GAC (GCSCs) that are isolated from tumor tissues and peripheral blood of patients carried CD44 and CD54 surface markers, generated tumors that highly resemble the original human tumors when injected into immunodeficient mice, differentiated into gastric epithelial cells in vitro, and self-renewed in vivo and in vitro. Our findings suggest that effective therapeutic protocols must target GCSCs. The capture of GCSCs from the circulation of GAC patients also shows great potential for identification of a critical cell population potentially responsible for tumor metastasis, and provides an effective protocol for early diagnosis and longitudinal monitoring of gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号