首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genomic instability is considered by many authors the key engine of tumorigenesis. However, mounting evidence indicates that a small population of drug resistant cancer cells can also be a key component of tumor progression. Such cancer stem cells would define a compartment effectively acting as the source of most tumor cells. Here we study the interplay between these two conflicting components of cancer dynamics using two types of tissue architecture. Both mean field and multicompartment models are studied. It is shown that tissue architecture affects the pattern of cancer dynamics and that unstable cancers spontaneously organize into a heterogeneous population of highly unstable cells. This dominant population is in fact separated from the low-mutation compartment by an instability gap, where almost no cancer cells are observed. The possible implications of this prediction are discussed.  相似文献   

2.
Cancer stem cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. A number of cell surface markers such as CD44, CD24, and CD133 are often used to identify and enrich CSCs. A regulatory network consisting of microRNAs and Wnt/β-catenin, Notch, and Hedgehog signaling pathways controls CSC properties. The clinical relevance of CSCs has been strengthened by emerging evidence, demonstrating that CSCs are resistant to conventional chemotherapy and radiation treatment and that CSCs are very likely to be the origin of cancer metastasis. CSCs are believed to be an important target for novel anti-cancer drug discovery. Herein we summarize the current understanding of CSCs, with a focus on the role of miRNA and epithelial–mesenchymal transition (EMT), and discuss the clinical application of targeting CSCs for cancer treatment.  相似文献   

3.
Being the second leading cause of death globally, cancer has been a long-standing and rapidly evolving focus of biomedical research and practice in the world. A tremendous effort has been made to understand the origin of cancer cells, the formation of cancerous tissues, and the mechanism by which they spread and relapse, but the disease still remains mysterious. Here, we made an attempt to scrutinize evidences that indicate the role of stem cells in tumorigenesis and metastasis, and cancer relapse. We also looked into the influence of cancers on stem cells, which in turn represent a major constituent of tumor microenvironment. Based on current understandings of the properties of (cancer) stem cells and their relation to cancers, we can foresee that novel therapeutic approaches would become the next wave of cancer treatment.  相似文献   

4.
In several forms of human cancer, only a phenotypic subset of cancer cells, usually termed "cancer stem cells" (CSC), can initiate tumor growth when transplanted. In this issue of Cell Stem Cell, Hermann et al. (2007) analyze the relationship between CSC and tumor metastasis.  相似文献   

5.
6.
The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell(CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cel s harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.  相似文献   

7.
Cancer stem cells (CSCs) or tumor initiating cells were identified and characterized as a unique subpopulation with stem cell features in many types of cancer. Current CSC studies provide novel insights regarding tumor initiation, progression, angiogenesis, resistance to therapy and interplay with the tumor micro-environment. A cancer stem cell niche has been proposed based on these findings. The niche provides the soil for CSC self-renewal and maintenance, stimulating essential signaling pathways in CSCs and leading to secretion of factors that promote angiogenesis and long term growth of CSCs. We present evidence which has emerged over the past 5 years indicating interaction of CSCs with angiogenesis in the proposed "vascular niche". Based on these findings, targeting the "cancer stem cell niche" by combining an individualized anti-CSC approach with treatment of their microenvironment may represent a novel therapeutic strategy against solid tumor systems.  相似文献   

8.
Cancer stem cells: the lessons from pre-cancerous stem cells   总被引:1,自引:0,他引:1  
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.  相似文献   

9.
The exact role that bone marrow (BM)-derived endothelial progenitor cells (EPCs) play in tumor neovascularization is heavily debated. We develop a quantitative three-compartment model with predictive power regarding the dynamics of tumorigenesis. There are two distinct processes by which tumor neovasculature can be built: angiogenesis is the formation of new blood vessels from preexisting vessels; vasculogenesis is the formation of new vessels by recruiting circulating EPCs. We show that vasculogenesis-driven and angiogenesis-driven tumors grow in different ways. (i) If angiogenesis is the prevailing process, then the tumor mass (and volume) will grow as a cubic power of time, and BM-derived EPCs will stay at a constant level. (ii) If vasculogenesis is the dominant process, then the tumor mass will be characterized by a linear growth in time, and the number of circulating EPCs (after possibly increasing to a maximum) will decrease to low levels. With this information, one can identify the "signature" of each of the processes in the observations of tumor growth and the dynamics of the relevant characteristics, such as the level of BM-derived EPCs. We show how our results can help explain some apparently contradictory experimental data. We also propose ways to couple this study with directed experiments to identify the exact role of vasculogenesis in tumor progression.  相似文献   

10.
11.
Adults maintain a reservoir of hematopoietic stem cells that can enter the circulation to reach organs in need of regeneration. We developed a novel model of retinal neovascularization in adult mice to examine the role of hematopoietic stem cells in revascularizing ischemic retinas. Adult mice were durably engrafted with hematopoietic stem cells isolated from transgenic mice expressing green fluorescent protein. We performed serial long-term transplants, to ensure activity arose from self-renewing stem cells, and single hematopoietic stem-cell transplants to show clonality. After durable hematopoietic engraftment was established, retinal ischemia was induced to promote neovascularization. Our results indicate that self-renewing adult hematopoietic stem cells have functional hemangioblast activity, that is, they can clonally differentiate into all hematopoietic cell lineages as well as endothelial cells that revascularize adult retina. We also show that recruitment of endothelial precursors to sites of ischemic injury has a significant role in neovascularization.  相似文献   

12.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma.  相似文献   

13.
Gliomas and medulloblastomas are the most frequent malignant brain tumors in adult and children respectively. Although both tumors arise in the CNS, there is a significant difference in their therapeutic response, resulting in medulloblastomas as being relatively curable, while glioblastomas are basically incurable. During the last decade several reports have demonstrated the existence of cancer stem cells in brain tumors, their location and their response to treatment. We have recently described the therapeutic response of medulloblastomas to radiation in their native microenvironment, describing how p53 and PI3K signaling pathway leads to nestin-expressing cells in the perivascular stem cell niche evading cell death while the tumor-bulk succumbs to apoptosis 1. It remains to be determined whether this mechanism of tumor resistance applies to the more complex stem-cell niche and tumor bulk of gliomas.  相似文献   

14.
15.
癌症是导致人类死亡的主要因素之一.尽管在癌症治疗方面取得了巨大进展,但是,其较高的复发率最终还是会导致死亡.连续治疗失败的一个可能原因是,残留的恶性细胞有类似干细胞的分化潜能,这样就能再次形成肿瘤和造成病灶转移.肿瘤干细胞(cancer stem cells,CSCs)论的建立为肿瘤研究开辟了全新的视角,肿瘤的无限增殖、复发及转移的生物学特性可能是由于占肿瘤内极少数肿瘤干细胞的存在.而其他肿瘤细胞占瘤体的绝大多数,却没有或只有有限的增殖潜能.最近研究发现前列腺癌中亦存在肿瘤干细胞.本文就肿瘤干细胞与前列腺癌的研究现状进行综述.  相似文献   

16.
人类肿瘤大约90%以上源自于上皮。上皮干细胞是唯一长期存在于上皮组织的细胞,可积累多次突变生成肿瘤。所以,人们认为肿瘤多起源于正常干细胞。然而,目前研究中关于上皮肿瘤干细胞及其与正常上皮干细胞的关系了解甚少。现综述近年来有关上皮干细胞和肿瘤发生的关系及其调控机制方面的研究进展。  相似文献   

17.
Cancer stem cells in solid tumors   总被引:12,自引:0,他引:12  
Cancer stem cells (CSCs) are cells that drive tumorigenesis, as well as giving rise to a large population of differentiated progeny that make up the bulk of the tumor, but that lack tumorigenic potential. CSCs have been identified in a variety of human tumors, as assayed by their ability to initiate tumor growth in immunocompromised mice. Further characterization studies have demonstrated that gene expression profiles in breast cancer correlate with patient prognosis, and brain CSCs are specifically resistant to radiation through DNA damage repair. In addition, specific signaling pathways play a functional role in CSC self renewal and/or differentiation, and early studies indicate that CSCs are associated with a microenvironmental niche. Thus the biological properties of CSCs are just beginning to be revealed, and the continuation of these studies should lead to the development of CSC-targeted therapies for cancer treatment.  相似文献   

18.
The cell of origin of cancer as well as cancer stem cells is still a mystery. In a recent issue of JCMM, Wang et al. challenged the conventional somatic genetic mutation model of multi‐stage carcinogenesis of breast cancer and proposed that ‘Invasive cancers are not necessary from preformed in situ tumours—an alternative way of carcinogenesis from misplaced stem cells’. If this stem cell misplacement theory could withstand future experimental evaluation, it may provide a paradigm shift in the prevention and management of cancer in the clinic.  相似文献   

19.
20.
Mesenchymal stromal cells (MSCs), also called mesenchymal stem cells, migrate and function as stromal cells in tumor tissues. The effects of MSCs on tumor growth are controversial. In this study, we showed that MSCs increase proliferation of tumor cells in vitro and promote tumor growth in vivo. We also further analyzed the mechanisms that underlie these effects. For use in in vitro and in vivo experiments, we established a bone marrow-derived mesenchymal stromal cell line from cells isolated in C57BL/6 mice. Effects of murine MSCs on tumor cell proliferation in vitro were analyzed in a coculture model with B16-LacZ cells. Both coculture with MSCs and treatment with MSC-conditioned media led to enhanced growth of B16-LacZ cells, although the magnitude of growth stimulation in cocultured cells was greater than that of cells treated with conditioned media. Co-injection of B16-LacZ cells and MSCs into syngeneic mice led to increased tumor size compared with injection of B16-LacZ cells alone. Identical experiments using Lewis lung carcinoma (LLC) cells instead of B16-LacZ cells yielded similar results. Consistent with a role for neovascularization in MSC-mediated tumor growth, tumor vessel area was greater in tumors resulting from co-injection of B16-LacZ cells or LLCs with MSCs than in tumors induced by injection of cancer cells alone. Co-injected MSCs directly supported the tumor vasculature by localizing close to vascular walls and by expressing an endothelial marker. Furthermore, secretion of leukemia inhibitory factor, macrophage colony-stimulating factor, macrophage inflammatory protein-2 and vascular endothelial growth factor was increased in cocultures of MSCs and B16-LacZ cells compared with B16-LacZ cells alone. Together, these results indicate that MSCs promote tumor growth both in vitro and in vivo and suggest that tumor promotion in vivo may be attributable in part to enhanced angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号