首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alginate gels formed by diffusion of calcium ions into solutions of sodium alginate were found to exhibit optical anisotropy depending on preparation conditions. When observed under crossed nicols, the anisotropic alginate gels showed a birefringence pattern which is characteristic of radial orientation of polymer chains. Calcium alginate gels were prepared from different concentrations of sodium alginate and calcium ion, and the conditions for formation of the anisotropic gels were determined. The gel-formation process was measured by monitoring the development of the birefringent layer and was compared with the model in which the diffusion of calcium ions dominates gel formation.  相似文献   

2.
Physically cross-linked beta-lactoglobulin (BLG) protein gels containing theophylline and sulfamethoxazole low molecular weight drugs were prepared in 50% ethanol solution at pH 8 and two protein concentrations (6 and 7% (w/v)). Swelling behavior of cylindrical gels showed that, irrespective of the hydrated or dehydrated state of the gel, the rate of swelling was the highest in water. When the gels were exposed to water, they first showed a swelling phase in which their weight increased 3 and 30 times for hydrated and dehydrated gels, respectively, due to absorption of water, followed by a dissolution phase. The absorption of solvent was however considerably reduced when the gels were exposed to aqueous buffer solutions. The release behavior of both theophylline and sulfamethoxazole drugs from BLG gels was achieved in a time window ranging from 6 to 24 h. The drug release depended mainly on the solubility of the drugs and the physical state of the gel (hydrated or dry form). Analysis of drug release profiles using the model of Peppas showed that diffusion through hydrated gels was governed by a Fickian process whereas diffusion through dehydrated gels was governed partly by the swelling capacities of the gel but also by the structural rearrangements inside the network occurring during dehydration step. By a judicious selection of protein concentration, hydrated or dehydrated gel state, drug release may be modulated to be engineered suitable for pharmaceutical as well as cosmetics and food applications.  相似文献   

3.
The relation between the chemical structure of a protein and the physical properties of a heat-set gel of that protein has been investigated. The physical properties of the gel are determined by means of mechanical experiments in which the viscoelastic properties of the gel are determined in terms of the storage shear modulus, the loss modulus and the stress-strain curve. The storage shear modulus defined the solid (elastic) character of the gel. The chemical structure of the protein and the nature of the solvent determine the nature and number of cross-links in the gel. The cross-links in gels formed by heating concentrated solutions of ovalbumin in 6M urea solutions were found to be disulfide bridges and the mechanical properties of these ovalbumin/urea gels approximated those of an ideal rubber. The latter finding enables one to calculate the number of cross-links per ovalbumin molecule from the value of the storage modulus, using the classical theory of rubber elasticity. This theory, together with the Flory-Huggins lattice model, can also be used to calculate the number of cros-links per ovalbumin molecule from the swelling behavior of ovalbumin/urea gels. The number of cross-links per ovalbumin molecule calculated from these two types of experiments are in mutual agreement and correspond with the number of thiol groups in ovalbumin. We conclude, thereforee, that theories of polymer physics can be used to relate the chemical structure of a protein to the physical properties of its gel.  相似文献   

4.
Diffusion characteristics of calcium alginate gels.   总被引:3,自引:0,他引:3  
The diffusivity of a protein solute (bovine serum albumin) within calcium alginate gels made from sodium alginate of different guluronic acid content was determined. It was found that protein diffusion within alginate gels, prepared to be isotropic in structure, was greatest for gels prepared from sodium alginate of low guluronic acid content as opposed to those prepared from sodium alginate of high guluronic acid content. This finding was explained in terms of the difference in flexibility of the polymer backbone of the two alginates. The greater the polymer backbone flexibility, the greater the solute diffusivity within the gel.  相似文献   

5.
Hyun H  Kim YH  Song IB  Lee JW  Kim MS  Khang G  Park K  Lee HB 《Biomacromolecules》2007,8(4):1093-1100
An MPEG-PCL diblock copolymer was synthesized as an in situ gel carrier, and its phase transition behavior in aqueous solutions was examined. For comparison, aqueous solutions of Pluronic F-127, a widely used injectable gel-forming solution, were also studied. Both MPEG-PCL copolymer and Pluronic aqueous solutions were sols at room temperature. As the temperature was increased above room temperature, the diblock copolymer and Pluronic solutions underwent a sol-to-gel phase transition, which manifested as an increase in viscosity indicative of the formation of a gel. All of the copolymer solutions became gels at body temperature, although the gel viscosity increased with the increasing concentration of the MPEG-PCL diblock copolymer in the solution. In in vitro experiments, in which the gels were exposed to PBS, the MPEG-PCL gels maintained their structural integrity for more than 28 days, whereas the Pluronic gel disappeared within 2 days. The same results were observed when the polymer solutions were subcutaneously injected into rats. The MPEG-PCL gels maintained their structural integrity longer than 30 days, while the Pluronic gel could not be observed after 2 days. The ability of the gels as drug carriers was studied by measuring the release of fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) from MPEG-PCL diblock copolymer gels in vitro as well as in vivo. In vitro, BSA release was sustained above 20 days, with a greater release at lower diblock copolymer concentration; by contrast, Pluronic gels exhibited almost complete release of BSA-FITC within 1 day. When the BSA-FITC-loaded diblock copolymer and Pluronic solutions were subcutaneously injected into rats, they immediately transformed into a gel. In vivo, sustained release of BSA-FITC over 30 days was observed from the MPEG-PCL gel, whereas BSA-FITC release from the Pluronic gel ceased within 3 days. Collectively, the present findings show that MPEG-PCL diblock copolymer solutions are thermo-responsive and maintain their structural integrity under physiological conditions, indicating that they are suitable for use as injectable drug carriers.  相似文献   

6.
Alginates are polysaccharides consisting of beta-D-mannuronate and alpha-L-guluronate units. In the presence of bivalent cations like calcium the guluronate blocks form physically cross-linked gels. The gelation properties of alginates play an important role in the stability of extracellular polymer substances and in the food industry. When stock solutions of Ca2+ ions and alginate are mixed, the gelation starts before the Ca2+ ions are evenly distributed, which leads to non-uniform gels. In this contribution, Ca alginate gels were prepared by in situ gelation using glucono-delta-lactone and CaCO3. In this way, uniform gels could be prepared directly in the measuring cell. Below a critical concentration, highly viscous solutions were obtained, which were below the critical point of gel formation. In these solutions at low rotational speeds a Schlieren peak arose, which became smaller and steeper with increasing time until a new meniscus could be detected. This behaviour is in contrast to the peak broadening due to diffusion after a synthetic boundary was formed. Evaluation of the data leads to negative diffusion coefficients. It has been shown by others that the mutual diffusion coefficient must be negative in the spinodal region. This phenomena is known as uphill diffusion and leads to phase separation of a binary system. The formation of the gel phase in this case is therefore discussed as uphill diffusion.  相似文献   

7.
The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model.  相似文献   

8.
Whey protein gels prepared under acidic conditions (pH<4.6) remain largely unutilized because of their weak and brittle nature in contrast to the favorable elastic gels produced at neutral or basic conditions. However, such usage is important, as low pH food products are desirable due to their shelf stability and less stringent sterilization processes. In this study, we use a two-step process involving enzyme followed by heat treatment to produce whey protein gels at low pH (4.0). Dynamic rheological measurements reveal that the gel elastic modulus and yield stress increase substantially when heat treatment is supplemented with enzyme treatment. Both the elastic modulus and yield stress increase with increasing enzyme concentration or treatment time. In contrast, the dynamic yield strain decreases with enzyme concentration but increases with time of enzyme treatment. These results are explained in terms of the enzyme treatment time affecting the diffusion of the enzyme within the gel. This in turn leads to two types of gel microstructure at short and long enzyme treatment times, with the extent of enzyme diffusion modulating the structure at intermediate times.  相似文献   

9.
Cold-set whey protein (WP) gels with addition of xanthan or guar were evaluated by mechanical properties and scanning electron microscopy. Gels were formed after the addition of different amounts of glucono-δ-lactone to thermally denatured WP solutions, leading to different acidification rates and final pH values. At lower acidification rates and higher final pH, gels showed more discontinuous structure and weaker and less elastic network, which was attributed to a predominance of phase separation during gel formation due to slower gelation kinetics. In contrast, at higher acidification rates and lower final pHs, gelation prevailed over phase separation, favoring the formation of less porous structures, resulting in stronger and more elastic gels. The gels’ fractal dimension (D f; structure complexity) and lacunarity were also influenced by the simultaneous effects of gelation and phase separation. For systems where phase separation was the prevailing mechanism, greater lacunarity parameters were usually observed, describing the heterogeneity of pore distribution, while the opposite occurred at prevailing gelation conditions. Increase in guar concentration or lower final pH of xanthan gels entailed in D f reduction, while the increase in xanthan concentration resulted in higher D f. Such a result suggests that the network contour length was rugged, but this pattern was reduced by the increase of electrostatic interactions among WP and xanthan. Guar addition caused the formation of gel network with smoother surfaces, which could be attributed to the guar–protein excluded volume effects leading to an increase in protein–protein interactions.  相似文献   

10.
Guinea pig liver transglutaminase is a Ca2+ dependent enzyme which catalyzes the formation of inter- and intramolecular ε-(γ-glutamyl)lysyl cross-links between protein molecules. We have found that solutions of several proteins (αs1-casein, and soybean 11S and 7S globulins) were gelatinized firmly by transglutaminase. The gel formation depended on the protein concentration. In the case of αs1-casein, a reaction mixture containing below 2% was incapable of gelation. However, above 3%, a firm gel was formed by transglutaminase. As to soybean 11S and 7S globulins, reaction mixtures containing below 5% did not form gels, while, above 8%, firm gels were formed. The protein solutions in the presence of EDTA, an inhibitor of transglutaminase, were not gelatinized on treatment with transglutaminase. Thus, transglutaminase and a higher concentration of a substrate protein are indispensable for firm gel formation. It is supposed that the protein gels are formed through covalent bonds with transglutaminase.  相似文献   

11.
The regeneration kinetics of cellulose from cellulose--NaOH--water gels immersed in a nonsolvent bath is studied in detail. Cellulose concentration, bath type, and temperature were varied, and diffusion coefficients were determined. The results were compared with data measured and taken from the literature on the regeneration kinetics of cellulose from cellulose--N-methylmorpholine-N-oxide (NMMO) monohydrate solutions. Different theories developed for the transport behavior of solutes in hydrogels or in porous media were tested on the systems studied. While the diffusion of NaOH from cellulose--NaOH--water gels into water has to be described with "porous media" approaches, the interpretation of NMMO diffusion is complicated because of the change of NMMO's state during regeneration (from solid crystalline to liquid) and the high concentration of NMMO in the sample. The activation energies were calculated from diffusion coefficient dependence on temperature for both systems and compared with the ones obtained from the rheological measurements. The activation energy of cellulose--NaOH--water systems does not depend on cellulose concentration or the way of measurement. This result shows that whatever the system is, pure NaOH--water solution, cellulose--NaOH--water solution, or cellulose--NaOH--water gel, it is NaOH hydrate with or without cellulose in solution, which is moving in the system. The swelling of cellulose in different nonsolvent liquids such as water or different alcohols during regeneration was investigated and interpreted using the Hildebrand parameter.  相似文献   

12.
Self-diffusion coefficient of an aroma molecule (4-ethyl guaicol) was measured using the pulsed field gradient spin echo NMR (PGSE-NMR) method in order to investigate the influence of a macromolecular matrix on its diffusion and release processes. Iota (ι)-carrageenan was used for its ability to form thermoreversible gels in aqueous salt solutions. Variations of the ι-carrageenan and the salt concentrations permitted various gels with different thermal and rheological properties to be obtained. These latter were modified by an isotope effect obtained by preparing gels in D2O. The NMR self-diffusion measurements realised for water and the aroma molecules indicated neither chemical interactions with ι-carrageenan, nor obstruction effects from the polysaccharide chains. In ι-carrageenan gels, the diffusional phenomenon was highly dependent on the heterogeneous gel structure and controlled by hydrodynamic interactions due to frictional drag between each molecule of the system and water microviscosity changes.  相似文献   

13.
Diffusion characteristics of substrates in Ca-alginate gel beads   总被引:9,自引:0,他引:9  
The diffusion characteristics of several substrates of varying molecular sizes into and from Ca-alginate gel beads in well-stirred solutions were investigated. The values of the diffusion coefficient (D) of substrates such as glucose, L-tryptophan, and alpha-lactoalbumin [with molecular weight (MW) less than 2 x 10(4)] into and from the gel beads agreed with those in the water system. Their substrates could diffuse freely into and from the gel beads without disturbance by the pores in the gel beads. The diffusion of their substrates into and from the gel beads was also not disturbed by increasing the Ca-alginate concentration in the beads and the CaCl(2) concentration used in the gel preparation. In the case of higher molecular weight substances such as albumin (MW = 6.9 x 10(4)), gamma-globulin (MW = 1.54 x 10(5)) and fibrinogen (MW = 3.41 x 10(5)), the diffusion behaviors of the substrates into and from the gel beads were very different. No diffusion of their substrates into the gel beads from solutions was observed, and only albumin was partly absorbed on the surface of the gel beads. The values of D of their substrates from the gel beads into their solutions were smaller than their values in the water system, but all their substrates could diffuse from the gel beads. The diffusion of high molecular weight substrates was limited more strongly by the increase of Ca-alginate concentration in the gel beads than by the increase of the CaCl(2) concentration used in the gel preparation. Using these results, the capacity of Ca-alginate gel as a matrix of immobilization was discussed.  相似文献   

14.
Poly(N-vinylimidazole), PVIm, gels were prepared by γ-irradiation polymerization of N-vinylimidazole in aqueous solutions. These affinity gels with a water swelling ratio of 1800% for plain polymeric gel and between 30 and 80% for Cu(II) and Co(II)-chelated gels at pH 6.0 in phosphate buffer were used in glucose oxidase (GOx) adsorption–desorption studies. Different amounts of Cu(II) and Co(II) ions (maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)) were loaded onto the gels by changing the initial concentration of Cu(II) and Co(II) ions, and pH. GOx adsorption on these gels from aqueous solutions containing different amount of GOx at different pH was investigated in batch reactors. Immobilized glucose oxidase activity onto the poly(N-vinylimidazole), and Cu(II) and Co(II)-chelated poly(N-vinylimidazole) were investigated with changing pH and the initial glucose oxidase concentration. Maximum activity of immobilized glucose oxidase onto the PVIm, Cu(II) and Co(II)-chelated PVIm gels was investigated and pH dependence was observed to be at pH 6.5 for free enzyme, pH 7.0 for PVIm, pH 7.5 for Cu(II) and Co(II)-chelated PVIm gels, respectively. The stability of the immobilized enzyme is very high for all gels and the residual activity was higher than 93% in the first 10 days.  相似文献   

15.
Water-extractable arabinoxylan (WEAX) gels exhibiting different structural, rheological and protein transport properties were obtained upon laccase treatment of WEAX solutions, by modifying (i) the initial ferulic acid (FA) content of WEAX from 2.3 to 1.6 μg/mg AX or (ii) the AX concentration of the WEAX solution from 0.5 to 2.0% (w/v). WEAX gels with di and tri-ferulic acid (di-FA, tri-FA) contents varying from 6.2 to 3.2 μg/ml gel and from 0.61 to 0.27 μg/ml gel, respectively, were obtained. In parallel, increases in gel mesh sizes from 201 to 331 nm and reduction of G′ of gels from 160 to 12 Pa were observed. The differences in structural and rheological characteristics of WEAX gels were reflected in their capacity to load and release proteins of Mw ranging from 43 to 669 kDa. The possibility of modulating protein release from WEAX gels makes these gels potential candidates for the controlled delivery of proteins.  相似文献   

16.
Physical and chemical modifications of collagen gels: impact on diffusion   总被引:2,自引:0,他引:2  
The extracellular matrix (ECM) represents a major barrier for delivery of therapeutic drugs, and the transport is determined by the ECM composition, structure, and distribution. Because of the high interstitial fluid pressure in tumors, diffusion becomes the main transport mechanism through ECM. The purpose of this work was to study the impact of the structure of the collagen network on diffusion, by studying to what extent the orientation and chemical modification of the collagen network influenced diffusion. Collagen gels with a concentration of 0.2-2.0% that is comparable with the amount of collagen in the tumor ECM were used as a model system for ECM. Collagen gels were aligned in a low-strength magnetic field and geometrical confinement, and chemically modified by adding decorin or hyaluronan. Diffusion of dextran 2-MDa molecules in the collagen gels was measured using fluorescence recovery after photobleaching. Alignment of the collagen fibers in our gels was found to have no impact on the diffusion coefficient. Adding decorin reduced the diameter of the collagen fibers, but no effect on diffusion was observed. Hyaluronan also reduced the fiber diameter, and high concentration of hyaluronan (2.5 mg/ml) increased the diffusion coefficient. The results indicate that the structure of the collagen network is not a major factor in determining the diffusion through the ECM. Rather, increasing the concentration of collagen was found to reduce the diffusion coefficient. Concentration of the collagen network is more important than the structure in determining the diffusion coefficient.  相似文献   

17.
Proteins in aqueous salt solutions (up to 4 mil) were adsorbed by hydrophobic interaction on phenyl-Sepharose gel (0.1 ml) in small columns. After washing out excess salt, gels were applied on the surface of flat bed polyacrylamide gels for isoelectric focusing, which resulted in efficient desorption and transport of protein out of the phenyl-Sepharose gel. There was no difficulty in obtaining a fifty-fold concentration. The following parameters at adsorption of protein were studied: (i) salt concentration in the protein solution; (ii) phenyl-Sepharose gel adsorptive capacity for protein; (iii) suitable volume of washing solution for the phenyl-Sepharose gel. Theoretical aspects on factors promoting adsorption and desorption of proteins on phenyl-Sepharose gel are discussed. Also discussed are earlier used procedures for concentration and/or dialysis. When dilute protein solutions are to be examined for analytical purposes, the proposed procedures seems to be a valuable aid, which does not require expensive equipment, and is quick and simple to perform.  相似文献   

18.
The aim of this study was to demonstrate the potential for holographic interferometry to be used for diffusion studies of large molecules in gels. The diffusion and partitioning of BSA (67,000 g/mol) and pullulans (5,900-112,000 g/mol) in agarose gel were investigated. The gel diffusion coefficients obtained for BSA were higher when distilled water was used as a solvent compared to those obtained with 0.1 M NaCl as the solvent. Furthermore, the gel diffusion coefficient increased with increasing BSA concentration. The same trend was found for liquid BSA diffusion coefficients obtained by DLS. BSA partition coefficients obtained at different agarose gel concentrations (2-6%, w/w) decreased slightly with increasing gel concentration. However, all BSA gel diffusion coefficients measured were significantly lower than those in pure solvent and they decreased with increasing agarose concentration. The gel diffusion coefficients obtained for pullulans decreased with increasing pullulan molecular weight. The same effect from increased molecular weight was seen in the liquid diffusion coefficients measured by DLS. The pullulan partition coefficients obtained decreased with increasing molecular weight. However, pullulans with a larger Stokes' radius than BSA had partition coefficients that were higher or approximately the same as BSA. This implied that the pullulan molecules were more flexible than the BSA molecules. The results obtained for BSA in this study agreed well with other experimental studies. In addition, the magnitude of the relative standard deviation was acceptable and in the same range as for many other methods. The results thereby obtained showed that holographic interferometry is a suitable method for studying diffusion of macromolecules in gels.  相似文献   

19.
The structure of heat-set systems of the globular protein bovine serum albumin (BSA) was investigated at pH 7 in different salt conditions (NaCl or CaCl(2)) using light scattering. Cross-correlation dynamic light scattering was used to correct for multiple scattering from turbid samples. After heat treatment, aggregates are formed whose size increases as the protein concentration increases. Beyond a critical concentration that decreases with increasing salt concentration, gels are formed. The heterogeneity and the reduced turbidity of the gels were found to increase with increasing salt concentration and to decrease with increasing protein concentration. The structure of the gels is determined by the strength of the repulsive electrostatic interactions between the aggregated proteins. The results obtained in NaCl are similar to those reported in previous studies for other globular proteins. CaCl(2) was found to be much more efficient in reducing electrostatic interactions than NaCl at the same ionic strength.  相似文献   

20.
Studies on diffusion of NAD and hemoglobin from calcium and barium gels are reported where alginate grade, concentration, and gel dimensions were varied. These show that NAD diffusion characteristics are unaffected by alginate and ion concentrations; however, hemoglobin diffusion is affected by alginate concentration. Both hemoglobin and NAD diffusion patterns were shown to be affected by alginate gel dimensions. Studies are reported that show that polymannuronic alginate gels posses good porosity characteristics while polyguluronic alginates from gels with lower porosity, specifically with respect to high-molecular-weight compounds. These findings are discussed with the view to the use of alginate gels for immobilization, solids separation, and diffusion chromatography techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号