首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are several mechanisms by which the central nervous system participates in the neural and humoral alterations associated with various forms of experimental hypertension. Structures in forebrain with multiple integrative roles in neuroendocrine control of the circulation are involved. Tissue surrounding the anteroventral region of the third cerebral ventricle (AV3V region) is involved physiologically in thirst, sodium homeostasis, osmoreception, secretion of vasopressin and natriuretic factor and sympathetic discharge to blood vessels. Destruction of this tissue prevents or reverses many forms of hypertension. In genetically based spontaneous hypertension, limbic structures such as the central nucleus of the amygdala rather than the AV3V region are the necessary neuroanatomic substrate. Recent evidence suggests that a circumventricular organ in brain stem, the area postrema, is also involved in the mediation of several forms of experimental hypertension. In renin- and nonrenin-dependent forms of renal hypertension, two major factors activate central mechanisms. First, direct central actions of angiotensin, acting through receptors in the subfornical organ and organum vasculosum of the lamina terminalis, increase sympathetic discharge and secretion of vasopressin through mechanisms integrated at the level of the AV3V region. Second, sensory systems originating in the kidney can activate increased sympathetic discharge through complex projection pathways involving forebrain systems. Mineralocorticoid hypertension appears to involve enhanced secretion of vasopressin and central vasopressinergic mechanisms also dependent on the AV3V region. Reciprocal connections between key central areas involved in control of arterial pressure provide the neuroanatomical basis for central nervous system participation in hypertension.  相似文献   

2.
3.
4.
The relationship between sympathetic innervation and arterial medial development has been examined in normotensive, hypertensive, and diabetic rats. Using the jejunal artery as a model, the number of nerve fibres innervating the artery as determined from fluorescent preparations, and the medial thickness and lumen diameter as measured from resin embedded specimens were correlated from animals prepared in various ways. The rats used were normal Sprague-Dawley (SD), SD with induced hypertension, SD with diabetes induced with streptozotocin, SD sympathectomized with 6-hydroxydopamine, spontaneously hypertensive rats (SHR), SHR treated with capsaicin to prevent hypertension development, Wistar Kyoto rats (WKY), and WKY treated with capsaicin. Examination of the jejunal arteries from these rats at 12 weeks of age following normal development, or 8 weeks of hypertension development, or 8 and 12 weeks of diabetes, showed that increased innervation occurred in the SHR under all conditions, and in the diabetic rats after 8 weeks of diabetes. Medial hypertrophy occurred in the SHR and in the SD hypertensive only. It is concluded that the special relationship which exists between the sympathetic innervation and arterial media in the SHR does not occur during hypertension development in the SD rat, nor is it necessary for normal medial development in the SD rat. The sympathetic innervation does appear to have a trophic influence on vascular smooth muscle of diabetic rats, at least in the early stages of the disease.  相似文献   

5.
6.
7.
8.
Of the various hypertensive disorders in which mineralocorticoid hormones are involved mainly those are reviewed in which, apart from aldosterone, hyporeactivity of the adrenergic nervous system may play a permissive role. The simultaneous occurrence and extent of participation of these two factors in essential hypertension are being appreciated increasingly. Their share in the mosaic of hypertension may add to the accumulating knowledge of this disease entity. In exploring the underlying mechanisms of hypertension common regulatory pathways involving aldosterone and the adrenergic nervous system may lead to new aethiopathogenetic insights.  相似文献   

9.
Role of the sympathetic nervous system in cold-induced hypertension in rats   总被引:8,自引:0,他引:8  
Hypertension develops in rats exposed chronically to cold [6 +/- 2 degrees C (SE)] and includes both an elevation of mean arterial pressure and cardiac hypertrophy. Previous studies suggest that cold-exposed animals, at least initially, have a large sustained increase in the activity of their sympathetic nervous system, suggesting a failure of the baroreceptor system to provide sufficient negative feedback to the central nervous system. The present study was designed to investigate whether alterations in the activity of the sympathetic nervous system, including the baroreceptor reflex, occur during exposure to cold and whether they contribute to cold-induced hypertension. Twenty male rats were prepared with indwelling catheters in the femoral artery and vein. Ten of the rats were exposed to cold (6 +/- 2 degrees C) chronically, while the remaining 10 were kept at 26 +/- 2 degrees C. Withdrawal of arterial blood samples (less than 5 ml/kg), measurement of direct arterial pressures, and measurement of baroreflex function were carried out at 0800 h at intervals throughout the experiment. Norepinephrine and epinephrine concentrations in plasma were also determined at intervals throughout the experiment. Systolic, diastolic, and mean blood pressures of cold-exposed rats were increased to levels significantly above those of controls. The sensitivity of the baroreflex (delta heart period/delta mean arterial pressure) was decreased in the cold-treated group. The concentration of norepinephrine in plasma increased after 24 h of exposure to cold and remained elevated throughout the experiment, whereas the concentration of epinephrine in plasma increased initially but returned to control levels after 19 days of exposure to cold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
12.
13.
14.
15.
Some postsynaptic effects of several classes of neurotransmitters appear to be mediated or modulated through the cyclic nucleotides, cyclic AMP and cyclic GMP. Available evidence suggests that the molecular mechanism by which the cyclic nucleotides carry out this second messenger role in nerve cells involves regulation of the state of phosphorylation of specific neuronal proteins. Phosphorylated proteins also appear to be involved in mediating certain of the actions of several other classes of regulatory agents, including calcium and the steroid hormones.  相似文献   

16.
Cnidarians represent the first animal phylum with an organized nervous system and a complex active behavior. The hydra nervous system is formed of sensory-motoneurons, ganglia neurons and mechanoreceptor cells named nematocytes, which all differentiate from a common stem cell. The neurons are organized as a nerve net and a subset of neurons participate in a more complex structure, the nerve ring that was identified in most cnidarian species at the base of the tentacles. In order to better understand the genetic control of this neuronal network, we analysed the expression of evolutionarily conserved regulatory genes in the hydra nervous system. The Prd-class homeogene prdl-b and the nuclear orphan receptor hyCOUP-TF are expressed at strong levels in proliferating nematoblasts, a lineage where they were found repressed during patterning and morphogenesis, and at low levels in distinct subsets of neurons. Interestingly, Prd-class homeobox and COUP-TF genes are also expressed during neurogenesis in bilaterians, suggesting that mechanoreceptor and neuronal cells derive from a common ancestral cell. Moreover, the Prd-class homeobox gene prdl-a, the Antp-class homeobox gene msh, and the thrombospondin-related gene TSP1, which are expressed in distinct subset of neurons in the adult polyp, are also expressed during early budding and/or head regeneration. These data strengthen the fact that two distinct regulations, one for neurogenesis and another for patterning, already apply to these regulatory genes, a feature also identified in bilaterian related genes.  相似文献   

17.
A variety of morphological, structural, and chemical changes have been described in the central nervous systems of aging humans and animals. Brain size and volume decline during senescence, and the brain atrophy is accompanied by changes in the number, size, and ultrastructural characteristics of nerve and glial cells. Moreover, recent evidence suggests that the ability of central nervous system cells to communicate with one another via the release of neurotransmitter compounds might be impaired in the elderly. Nutritional factors may play important roles in the aging process of the central nervous system by influencing brain neurotransmission, or by accelerating or retarding geriatric changes in central nervous system structure.  相似文献   

18.
19.
20.
The roles of the autonomic nervous system, renin-angiotensin system, and arginine vasopressin (AVP) during the onset of ACTH-induced hypertension were investigated in conscious sheep. Autonomic ganglion blockade or combined adrenergic and cholinergic receptor blockade demonstrated that an intact sympathetic nervous system was not essential for the development or maintenance of the hypertension. Autonomic blockade augmented the pressor response to ACTH, indicating that baroreceptor-mediated reflexes normally operate to suppress the degree of hypertension produced by ACTH. Evidence was obtained suggesting that the renin-angiotensin system and AVP may partially contribute to the maintenance of ACTH hypertension in the presence of autonomic blockade. However, the precise mechanism by which ACTH raises arterial pressure remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号