首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
反转录转座子标记及在作物遗传育种中的应用   总被引:2,自引:0,他引:2  
反转录转座子通过RNA中间体进行反转录而转座,广泛分布于各种植物基因组中,拷贝数多,异质性高,在种内和种间表现出较高的序列差异性和丰富的插入多态性。针对这些特点,开发出了几种基于反转录转座子的分子标记,如SSAP、RIVPI、RAP、REMAP和RBIP等。由于反转录转座子标记能揭示出丰富的多态性,因而在遗传多样性和系谱研究、遗传连锁图谱构建及性状基因定位等方面得到了应用。随着分离技术的不断改进,获取序列信息更加容易,反转录转座子作为分子标记用于作物遗传育种将具有广阔前景。  相似文献   

2.
Four molecular markers, including inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), sequence-specific amplified polymorphism (SSAP), and amplified fragment length polymorphism (AFLP), were compared in terms of their informativeness and efficiency for analysis of genetic relationships among 28 genotypes in the genus Diospyros. The results were as follows: (1) the highest level of detected polymorphism were observed for IRAP; (2) AFLP was the most efficient marker system due to the simultaneous detection of abundant polymorphism markers per single reaction; (3) the marker index (MI) value was lower for SSAP than for AFLP, but SSAP had a higher level of detected polymorphism than AFLP; (4) the correlation coefficients of similarity were statistically significant for all four marker systems; (5) the four molecular markers yielded similar phylogenetic trees. To our knowledge, this was the first detailed report of a comparison of performance among three retrotransposon-based molecular markers (IRAP, REMAP, SSAP) and the AFLP technique (DNA-based molecular marker) on a set of samples of Diospyros. The results provide guidance for future efficient use of these molecular methods in the genetic analysis of Diospyros.  相似文献   

3.
Retrotransposons are major components of eukaryotic genomes and are present in high copy numbers. We developed retrotransposon-based insertion polymorphism (RBIP) markers based on long terminal repeat (LTR) sequences and flanking genome regions by using shotgun genome sequence data of mango (Mangifera indica L.). Three novel LTR sequences were identified based on two LTR retrotransposon structural features; a 5′ LTR located upstream of the primer binding site and a 3′ LTR showing high sequence similarity to the 5′ LTR. Starting with 377 unique sequences containing both 3′ LTR and downstream genome region sequences, we developed 82 RBIP markers that were applied to DNA fingerprinting of 16 mango accession. Five RBIP markers were enough to distinguish all 16 accessions. Our result showed that LTR identification from shotgun genome sequences was effective for development of retrotransposon-based DNA markers without whole-genome sequence information. We discuss application of the developed RBIP markers for identification of genetic diversity and construction of a genetic linkage map.  相似文献   

4.
Insertional polymorphisms of two copia-like (Vine-1, Tvv1) and one gypsy-like (Gret1) retrotransposon found in the grapevine genome were studied in 29 Vitis genotypes (Vitis arizonica, Vitis cinerea, Vitis labrusca, Vitis rupestis, Vitis rotundifolia, Vitis vinifera subsp. sylvestris and 23 V. vinifera subsp. sativa) using inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP) and sequence-specific amplified polymorphism (SSAP) techniques. IRAP, REMAP and SSAP polymorphisms were compared with amplified fragment length polymorphism (AFLP), Inter-single sequence repeats (ISSR) and SSR polymorphisms by evaluating the information content, the number of loci simultaneously analysed per experiment, the effectiveness of the analyses in assessing the relationship between accessions and the number of loci needed to obtain a coefficient of variation of 10%. The UPGMA dendrograms of each molecular marker system were compared and the Mantel matrix correspondence test was applied. Furthermore, the corresponding insertion ages of the transposable elements were estimated for each retrotransposon subfamily analysed. The presence of Gret1, Tvv1 and Vine-1 retrotransposons in all analysed genotypes suggests that copia-like and gypsy-like retrotransposons are widespread in Vitis genus. The results indicate that these retrotransposons were active before Vitis speciation and contributed to Vitis genus evolution. IRAP, REMAP and SSAP markers allow the discrimination of Vitis species and V. vinifera subsp. sativa cultivars with certainty as has been shown with AFLP, ISSR and SSR analyses, but phylogenetic trees obtained by retrotransposon-based molecular markers polymorphisms show some significant differences in the allocation of the analysed accessions compare to those obtained by ISSR, AFLP and SSR molecular markers. The phylogenetic tree resulting from REMAP polymorphism appeared the most representative of the effective relationship between all analysed accessions.  相似文献   

5.
Retrotransposons play an important role in plant genetic instability and genome evolution. Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. In this study, suppression polymerase chain reaction was used, for the first time, to develop retrotransposon long terminal repeat (LTR) and polypurine tract (PPT) primers in Japanese persimmon (Diospyros kaki Thunb.), which were then employed for germplasm identification by means of interretrotransposon-amplified polymorphism (IRAP), sequence-specific amplified polymorphism (SSAP) and retrotransposon-microsatellite-amplified polymorphism (REMAP) molecular markers. The results showed that 16 out of 26 primers produced expected amplifications and abundant polymorphisms by IRAP in 28 genotypes of Diospyros. Moreover, some of these primers were further successfully used in REMAP and SSAP analysis. Each type of molecular markers produced unique fingerprint in 28 genotypes analyzed. Among the primers/primer combinations, two IRAP primers and four SSAP primer combinations could discriminate all of the germplasm solely. Further comparative analysis indicated that IRAP was the most sensitive marker system for detecting variability. High level of retrotransposon insertion polymorphisms between bud sports were detected by IRAP and SSAP, and the primers/primer combinations with powerful discrimination capacity for two pairs of bud sports lines were further obtained. Additionally, possible genetic relationships between several Japanese persimmon were discussed. To our knowledge, this is the first report on the development of retrotransposon LTR and PPT primers in Diospyros, and the retrotransposon primers developed herein might open new avenue for research in the future.  相似文献   

6.
The most popular retrotransposon-based molecular marker system in use at the present time is the sequence-specific amplification polymorphism (SSAP) system . This system exploits the insertional polymorphism of long terminal repeat (LTR) retrotransposons around the genome. Because the LTR sequence is used to design primers for this method, its successful application requires sequence information from the terminal region of the mobile elements . In this study, two LTR sequences were isolated from the cashew genome and used successfully to develop SSAP marker systems. These were shown to have higher levels of polymorphism than amplified fragment length polymorphic markers for this species.N.H. Syed and S. Sureshsundar contributed equally to this investigation.  相似文献   

7.
The retrotransposon-based sequence-specific amplification polymorphism (SSAP) marker system was used to assess the genetic diversities of collections of tomato and pepper industrial lines. The utility of SSAP markers was compared to that of amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. On the basis of our results, SSAP is most informative of the three systems for studying genetic diversity in tomato and pepper, with a significant correlation of genetic relationships between different SSAP datasets and between SSAP, AFLP and SSR markers. SSAP showed about four- to ninefold more diversity than AFLP and had the highest number of polymorphic bands per assay ratio and the highest marker index. For tomato, SSAP is more suitable for inferring overall genetic variation and relationships, while SSR has the ability to detect specific genetic relationships. All three marker results for pepper showed general agreement with pepper types. Additionally, retrotransposon sequences isolated from one species can be used in related Solanaceae genera. These results suggest that different marker systems are suited for studying genetic diversity in different contexts depending on the group studied, where discordance between different marker systems can be very informative for understanding genetic relationships within the study group.  相似文献   

8.
Grapevine germplasm, including 38 of the main Portuguese cultivars and three foreign cultivars, Pinot Noir, Pinot Blanc and Chasselas, used as a reference, and 37 true-to-type clones from the Alvarinho, Arinto, Loureiro, Moscatel Galego Branco, Trajadura and Vinh?o cultivars were studied using AFLP and three retrotransposon-based molecular techniques, IRAP, REMAP and SSAP. To study the retrotransposon-based polymorphisms, 18 primers based on the LTR sequences of Tvv1, Gret1 and Vine-1 were used. In the analysis of 41 cultivars, 517 IRAP, REMAP, AFLP and SSAP fragments were obtained, 83% of which were polymorphic. For IRAP, only the Tvv1Fa primer amplified DNA fragments. In the REMAP analysis, the Tvv1Fa-Ms14 primer combination only produced polymorphic bands, and the Vine-1 primers produced mainly ISSR fragments. The highest number of polymorphic fragments was found for AFLP. Both AFLP and SSAP showed a greater capacity for identifying clones, resulting in 15 and 9 clones identified, respectively. Together, all of the techniques allowed for the identification of 54% of the studied clones, which is an important step in solving one of the challenges that viticulture currently faces.  相似文献   

9.
Sequence comparison of orthologous regions enables estimation of the divergence between genomes, analysis of their evolution and detection of particular features of the genomes, such as sequence rearrangements and transposable elements. Despite the economic importance of Coffea species, little genomic information is currently available. Coffea is a relatively young genus that includes more than one hundred diploid species and a single tetraploid species. Three Coffea orthologous regions of 470-900 kb were analyzed and compared: both subgenomes of allotetraploid Coffea arabica (contributed by the diploid species Coffea eugenioides and Coffea canephora) and the genome of diploid C. canephora. Sequence divergence was calculated on global alignments or on coding and non-coding sequences separately. A search for transposable elements detected 43 retrotransposons and 198 transposons in the sequences analyzed. Comparative insertion analysis made it possible to locate 165 TE insertions in the phylogenetic tree of the three genomes/subgenomes. In the tetraploid C. arabica, a homoeologous non-reciprocal transposition (HNRT) was detected and characterized: a 50 kb region of the C. eugenioides derived subgenome replaced the C. canephora derived counterpart. Comparative sequence analysis on three Coffea genomes/subgenomes revealed almost perfect gene synteny, low sequence divergence and a high number of shared transposable elements. Compared to the results of similar analysis in other genera (Aegilops/Triticum and Oryza), Coffea genomes/subgenomes appeared to be dramatically less diverged, which is consistent with the relatively recent radiation of the Coffea genus. Based on nucleotide substitution frequency, the HNRT was dated at 10,000-50,000 years BP, which is also the most recent estimation of the origin of C. arabica.  相似文献   

10.
蒋爽  滕元文  宗宇  蔡丹英 《西北植物学报》2013,33(11):2354-2360
反转录转座子是真核生物基因组中普遍存在的一类可移动的遗传因子,它们以RNA为媒介,在基因组中不断自我复制。在高等植物中,反转录转座子是基因组的重要成分之一。反转录转座子可以分为5大类型,其中以长末端重复(LTR)类型报道较多。LTR类型由于其首尾具有长末端重复序列,内部含有PBS、PPT、GAG和POL开放阅读框、TSD等结构,可以采用生物信息学软件进行预测。LTR反转录转座子的活性受到自身甲基化和环境因素的影响,DNA甲基化抑制反转录转座子转座,而外界环境的刺激能够激活转座子,从而影响插入位点周边基因的表达。同时由于LTR反转录转座子在植物中普遍存在,丰富的拷贝数以及多态性为新型分子标记(RBIP、SSAP、IRAP、REMAP)的开发提供了良好的素材。该文对近年来国内外有关植物反转录转座子的类型、结构特征、 LTR反转录转座子的活性及其影响因素、 LTR反转录转座子的预测以及标记开发等方面的研究进展进行综述。  相似文献   

11.
Nuclear genome size has been measured in various plants, seeing that knowledge of the DNA content is useful for taxonomic and evolutive studies, plant breeding programs and genome sequencing projects. Besides the nuclear DNA content, tools and protocols to quantify the chromosomal DNA content have been also applied, expanding the data about genomic structure. This study was conducted in order to calculate the Coffea canephora and Coffea arabica chromosomal DNA content, associating cytogenetic methodologies with flow cytometry (FCM) and image cytometry (ICM) tools. FCM analysis showed that the mean nuclear DNA content of C. canephora and C. arabica is 2C = 1.41 and 2.62 pg, respectively. The cytogenetic methodology provided prometaphase and metaphase cells exhibiting adequate chromosomes for the ICM measurements and karyogram assembly. Based on cytogenetic, FCM and ICM results; it was possible to calculate the chromosomal DNA content of the two species. The 1C chromosomal DNA content of C. canephora ranged from 0.09 (chromosome 1) to 0.05 pg (chromosome 11) and C. arabica from 0.09 (chromosome 1) to 0.03 pg (chromosome 22). The methodology presented in this study was suitable for DNA content measuring of each chromosome of C. canephora and C. arabica. The cytogenetic characterization and chromosomal DNA content analyses evidenced that C. arabica is a true allotetraploid originated from a cross between Coffea diploid species. Besides, the same analyses also reinforce that C. canephora is a possible progenitor of C. arabica.  相似文献   

12.
The present study shows transferability of microsatellite markers developed in the two cultivated coffee species (Coffea arabica L. and C. canephora Pierre ex Froehn.) to 15 species representing the previously identified main groups of the genus Coffea. Evaluation of the genetic diversity and available resources within Coffea and development of molecular markers transferable across species are important steps for breeding of the two cultivated species. We worked on 15 species with 60 microsatellite markers developed using different strategies (SSR-enriched libraries, BAC libraries, gene sequences). We focused our analysis on 4 species used for commercial or breeding purposes. Our results establish the high transferability of microsatellite markers within Coffea. We show the large amount of diversity available within wild species for breeding applications. Finally we discuss the consequences for future comparative mapping studies and breeding of the two cultivated species.  相似文献   

13.
MPP is a Java application, encompassing both new and established algorithms, for the analysis of gene and marker content datasets arising from high-throughput microarray techniques. MPP analyses flat file output from microarray experiments to determine the probability of the presence or absence of genes or markers within a genome. MPP can construct gene or marker content datasets for a number of genomes and can use the data to estimate an evolutionary tree or network. Results from gene content analyses may be validated by comparing them to known gene contents. MPP was initially developed to analyse data derived from comparative genome hybridization (CGH) microarray experiments in fungi and bacteria. It has recently been adapted to analyse retrotransposon-based insertion polymorphism (RBIP) marker scores derived from tagged microarray marker (TAM) experiments in pea. New analytical procedures may be added easily to MPP as plugins in order to increase the scope of the software. AVAILABILITY: MPP source code, executables and online help are available at http://cbr.jic.ac.uk/dicks/software/  相似文献   

14.
Of the 103 accepted Coffea species, 70% are threatened with extinction but only a few of them have been studied. A set of 40 polymorphic microsatellite markers was developed using a GA/GT-enriched Coffea canephora genomic library. Amplification of these markers was tested in accessions of C. heterocalyx (a Critically Endangered species) and C. pseudozanguebariae (a Vulnerable species) belonging to different African geographical clades. All microsatellites were polymorphic in C. canephora, with a mean allele number per polymorphic locus of more than 3 (at least 9 genotypes were tested). Observed and expected heterozygosities calculated for C. canephora and C. pseudozanguebariae varied from 0.10 to 0.91 and from 0.20 to 0.77, respectively. In total, 38 primer pairs (95%) were amplified in C. heterocalyx and C. pseudozanguebariae, indicating their high level of transferability across the genus Coffea. This large marker set will be useful for more extensive genetic studies of threatened Coffea species.  相似文献   

15.
Arabica coffee (Coffea arabica L.) is a self-compatible perennial allotetraploid species (2n=4x=44), whereas Robusta coffee (C. canephora L.) is a self-incompatible perennial diploid species (2n=2x=22). C. arabica (C(a) C(a) E(a) E(a) ) is derived from a spontaneous hybridization between two closely related diploid coffee species, C. canephora (CC) and C. eugenioides (EE). To investigate the patterns and degree of DNA sequence divergence between the Arabica and Robusta coffee genomes, we identified orthologous bacterial artificial chromosomes (BACs) from C. arabica and C. canephora, and compared their sequences to trace their evolutionary history. Although a high level of sequence similarity was found between BACs from C. arabica and C. canephora, numerous chromosomal rearrangements were detected, including inversions, deletions and insertions. DNA sequence identity between C. arabica and C. canephora orthologous BACs ranged from 93.4% (between E(a) and C(a) ) to 94.6% (between C(a) and C). Analysis of eight orthologous gene pairs resulted in estimated ages of divergence between 0.046 and 0.665 million years, indicating a recent origin of the allotetraploid species C. arabica. Analysis of transposable elements revealed differential insertion events that contributed to the size increase in the C(a) sub-genome compared to its diploid relative. In particular, we showed that insertion of a Ty1-copia LTR retrotransposon occurred specifically in C. arabica, probably shortly after allopolyploid formation. The two sub-genomes of C. arabica, C(a) and E(a) , showed sufficient sequence differences, and a whole-genome shotgun approach could be suitable for sequencing the allotetraploid genome of C. arabica.  相似文献   

16.
Genetic diversity of Coffea arabica cultivars was estimated using amplified fragment length polymorphism (AFLP) markers. Sixty one Coffea accessions composed of six arabica cultivars, including Typica, Bourbon, Catimor, Catuai, Caturra and Mokka Hybrid, plus two diploid Coffea species, were analyzed with six EcoRI- MseI primer combinations. A total of 274 informative AFLP markers were generated and scored as binary data. These data were analyzed using cluster methods in the software package NTSYSpc. The differences among cultivars at the DNA level were small, with an average genetic similarity of 0.933. Most accessions within a cultivar formed a cluster, although deviant samples occurred in five of the six cultivars examined due to residual heterozygosity from ancestral materials. Among the six cultivars fingerprinted, the highest level of genetic diversity was found within the cultivar Catimor, with an average genetic similarity of 0.880. The lowest level was found within Caturra accessions, with an average genetic similarity of 0.993. Diversity between C. arabica and two other Coffea species, Coffea canephora and Coffea liberica, was also estimated with average genetic similarities of 0.540 and 0.413, respectively, suggesting that C. canephora is more closely related to C. arabica than is C. liberica. The genetic variation among arabica cultivars was similar to the variation within cultivars, and no cultivar-specific DNA marker was detected. Although arabica cultivars appear to have a narrow genetic base, our results show that sufficient polymorphism can be found among some arabica cultivars with a genetic similarity as low as 0.767 for genetic/QTL mapping and breeding. The assessment of genetic diversity among arabica cultivars provided the necessary information to estimate the potential for using marker-assisted breeding for coffee improvement.  相似文献   

17.
Molecular cytogenetic analysis has indicated that Coffea arabica is an amphidiploid formed from the hybridization between two closely related diploid progenitor species, C. canephora and C. eugenioides. Our aim was to determine the mode of inheritance in C. arabica and in a tetraploid interspecific hybrid (called arabusta) between C. arabica and C. canephora as revealed by segregation analyses of restriction fragment length polymorphism (RFLP) loci markers. The observed RFLP allele segregations in an F(2) progeny of C. arabica conform to disomic inheritance as expected, with regular bivalent pairing of homologous chromosomes in the F1 hybrid. In contrast, RFLP loci followed tetrasomic inheritance in the arabusta interspecific hybrid, although bivalents have been reported to predominate greatly at meiosis in its hybrid. These results suggest that homologous chromosomes do not pair in C. arabica, not as a consequence of structural differentiation, but because of the functioning of pairing regulating factors. Moreover, the arabusta hybrid seems to offer the possibility of gene exchange between the homologous genomes.  相似文献   

18.
Using standard phylogenetic methods, it can be hard to resolve the order in which speciation events took place when new lineages evolved in the distant past and within a short time frame. As an example, phylogenies of galliform birds (including well-known species such as chicken, turkey, and quail) usually show low bootstrap support values at short internal branches, reflecting the rapid diversification of these birds in the Eocene. However, given the key role of chicken and related poultry species in agricultural, evolutionary, general biological and disease studies, it is important to know their internal relationships. Recently, insertion patterns of transposable elements such as long and short interspersed nuclear element markers have proved powerful in revealing branching orders of difficult phylogenies. Here we decipher the order of speciation events in a group of 27 galliform species based on insertion events of chicken repeat 1 (CR1) transposable elements. Forty-four CR1 marker loci were identified from the draft sequence of the chicken genome, and from turkey BAC clone sequence, and the presence or absence of markers across species was investigated via electrophoretic size separation of amplification products and subsequent confirmation by DNA sequencing. Thirty markers proved possible to type with electrophoresis of which 20 were phylogenetically informative. The distribution of these repeat elements supported a single homoplasy-free cladogram, which confirmed that megapodes, cracids, New World quail, and guinea fowl form outgroups to Phasianidae and that quails, pheasants, and partridges are each polyphyletic groups. Importantly, we show that chicken is an outgroup to turkey and quail, an observation which does not have significant support from previous DNA sequence- and DNA-DNA hybridization-based trees and has important implications for evolutionary studies based on sequence or karyotype data from galliforms. We discuss the potential and limitations of using a genome-based retrotransposon approach in resolving problematic phylogenies among birds.  相似文献   

19.
A single base change in the Bn-FAE1.1 gene in the A genome and a two-base deletion in the Bn-FAE1.2 gene in the C genome produce the nearly zero content of erucic acid observed in canola. A BAC clone anchoring Bn-FAE1.1 from a B. rapa BAC library and a BAC clone anchoring Bn-FAE1.2 from a B. oleracea BAC library were used in this research. After sequencing the gene flanking regions, it was found that the dissimilarity of the flanking sequences of these two FAE1 homologs facilitated the design of genome-specific primers that could amplify the corresponding genome in allotetraploid B. napus. The two-base deletion in the C genome gene was detected as a sequence-characterized amplified region (SCAR) marker. To increase the throughput, one genome-specific primer was labeled with four fluorescence dyes and combined with 20 different primers to produce PCR products with different fragment sizes. Eventually, a super pool of 80 samples was detected simultaneously. This dramatically reduces the cost of marker detection. The single base change in the Bn-FAE1.1 gene was detected as single nucleotide polymorphic (SNP) marker with an ABI SNaPshot kit. A multiplexing primer set was designed by adding a polyT to the 5' primer end to increase SNP detection throughput through sample pooling. Furthermore, the Bn-FAE1.1 and Bn-FAE1.2 were integrated into the N8 and N13 linkage groups of our previously reported high-density sequence-related amplified polymorphism (SRAP) map, respectively. There were 124 SRAP markers in a N8 bin in which the Bn-FAE1.1 gene-specific SCAR marker was located and 46 SRAP markers in a N13 bin into which the Bn-FAE1.2 SNP marker was integrated. These three kinds of high throughput molecular markers have been successfully implemented in our canola/rapeseed breeding programs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号