首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

2.
Two gene constructs (pROK.TG1L and pROK.TG1LK) were utilized to achieve accumulation of maize γ-zein to high levels in tobacco (Nicotiana tabacum L.) leaves. Both the chimaeric genes contained the γ-zein-coding region preceded by the 5′untranslated leader from the coat protein mRNA of TMV, but one of them (pROK.TG1LK) was modified in its protein-coding region by the addition of the ER retention signal KDEL. The accumulation of γ-zein and γ-zein:KDEL in leaves was compared with heterologous protein accumulation in tobacco plants previously transformed with a γ-zein cDNA harbouring a native 5′UTR. Replacement of γ-zein 5′UTR with the TMV leader dramatically increased γ-zein production. Furthermore, γ-zein:KDEL-expressing plants, on average, accumulated twice as much foreign protein in their leaves as pROK.TG1L plants. The two-fold increase in the level of γ-zein:KDEL can probably be attributed to an improvement in the mechanism for ER retention of zeins in the transgenic cells. Transformants also showed increased production of BiP, though to a lesser extent in γ-zein:KDEL-expressing plants compared with pROK.TG1L plants. It is therefore likely that γ-zein:KDEL retention is made less dependent on the chaperone assistance of BiP by the presence of the KDEL signal on the γ-zein mutant. Received: 15 October 1999 / Accepted: 28 February 2000  相似文献   

3.
We have previously shown that the maize (Zea mays L.) storage prolamine γ-zein, accumulates in endoplasmic reticulum-derived protein bodies in transgenic plants of Arabidopsis thaliana (L.) ecotype R+P. The retention of γ-zein in the endoplasmic reticulum was found to be mediated by structural features contained in the polypeptide, an N-terminal proline-rich and a C-terminal cysteine-rich domain which were necessary for the correct retention and assembly of γ-zein within protein bodies (M.I. Geli et al., 1994, Plant Cell 6: 1911–1922). In the present work we incorporated in the γ-zein gene lysine-rich coding sequences which were positioned after the N-terminal proline-rich domain and at five amino-acid residues from the C-terminus. The targeting of lysine-rich γ-zeins was analyzed by expression of chimeric genes regulated by the cauliflower mosaic virus (CaMV) 35S promoter in transgenic Arabidopsis plants. The lysine-rich γ-zeins were detected by immunoblotting and we found that these proteins were modified post-translationally to reach their mature form. Subcellular fractionation and immunocytochemical studies demonstrated that glycosylated lysine-rich γ-zeins were secreted to the cell wall of transgenic Arabidopsis leaf cells. Received: 9 May 1997 / Accepted: 31 October 1997  相似文献   

4.
Accumulation of zeins, the endosperm storage proteins of maize, in a heterologous plant expression system was attempted. Plants of Nicotiana tabacum and Lotus corniculatus were transformed by Agrobacterium with binary vectors harbouring genes that code for γ-zein and β-zein, two zeins rich in sulphur amino acids. Adding the ER retention signal KDEL to the C-terminal domain modified the zein polypeptides. Significant levels of γ-zein:KDEL and β-zein:KDEL were detected in primary transformants of tobacco. Moreover, the two zeins colocalized in leaf protein bodies of γ-/β-zein:KDEL plants derived from a cross between two primary transformants. Coexpression of γ-zein:KDEL and β-zein:KDEL could be a useful strategy to obtain genotypes of forage legumes which are able to accumulate sulphur amino acids to high levels. As a first step, L. corniculatus plants expressing γ-zein:KDEL in the leaves were obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The particle gun approach was used for the quantification of promoter efficiency in a test system for transient gene expression. β-Glucuronidase was used as reporter gene for determining promotote strength. The variability inherent in this gene transfer system was considerably reduced by calculating a transformation efficiency factor given by the expression of a cotransferred second reporter gene (firefly luciferase). The calibration of β-glucuronidase activity by the transformation efficiency factor caused a lower statistical variance of the values and allowed reliable results to be obtained with a smaller set of repetitions. The CaMV 35S promoter (as a control) and the monocot-specific promoters for maize polyubiquitin1, rice actin 1 and the maize-derivedEmu were characterized and compared with respect to expression strength, as tested under identical conditions in suspension cell cultures of maize, barley and tobacco. Compared to the 35S promoter, the monocot-specific promoters show up to 15-fold higher expression in maize and barley but give only weak expression in tobacco. No expression was found for the rice actin 1 promoter in tobacco. The level of reporter gene expression is influenced by the osmotic potential in the agar medium. For theEmu promoter, the calibrated β-glucuronidase activities remained mearly constant at low sucrose concentrations. Above 8% sucrose, the calibrated activities increased steadily with increasing osmotic conditions, reaching a three-to four-fold higher level at the highest sucrose concentration (32%) as compared to the standard concentration (4% sucrose) in the medium.  相似文献   

6.
7.
8.
Suo G  Chen B  Zhang J  Duan Z  He Z  Yao W  Yue C  Dai J 《Plant cell reports》2006,25(7):689-697
Bone morphogenetic protein 2 (BMP2) has great potential in therapeutic applications. We are working on generating transgenic plants as a bioreactor to produce BMP2. We have studied the effects of codon optimization on the expression of human BMP2 (hBMP2) in tobacco plants. Three modified hBMP2 genes were transformed into tobacco under the control of either cauliflower mosaic virus 35S (CaMV35S) promoter or double-CaMV35S promoter plus alfalfa mosaic virus (AMV) enhancer. The fused β-glucuronidase (GUS) reporter gene was used to facilitate the assay of protein expression. The results indicated that codon optimization could increase the protein expression level obviously under CaMV35S promoter. However, under relatively stronger initiation condition (double-CaMV35S promoter plus AMV enhancer), only the gene with the lowest degree of codon optimization could increase the protein expression level. Our findings suggest that the action of codon optimization may be influenced by the factors of promoter strength and A+T content in tobacco plants.  相似文献   

9.
10.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

11.
It is desirable that the expression of transgenes in genetically modified crops is restricted to the tissues requiring the encoded activity. To this end, we have studied the ability of the heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small-subunit (SSU) gene promoters, RBCS3CP (0.8 kbp) from tomato (hycopersion esculentum Mill.) and SRS1P (1.5 kbp) from soybean (Glycine max [h.] Mers.), to drive expression of the β-glucuronidase (gusA) marker gene in apple (Malus pumila Mill.). Transgenic lines of cultivar Greensleeves were produced by Agrobacterium-mediated transformation and the level of gusA expression in the vegetative tissues of young plants was compared with that produced using the cauliflower mosaic virus (CaMV) 35S promoter. These quantitative GUS data were assessed for their relationship to the copy number of transgene loci. The precise location of GUS activity in leaves was identified histochemically. The heterologous SSU promoters were active primarily in the green vegetative tissues of apple, although activity in the roots was noticeably higher with the RBCS3C promoter than with the SRS1 promoter. The mean GUS activity in leaf tissue of the SSU promoter transgenics was approximately half that of plants containing the CaMV 35S promoter. Histochemical analysis demonstrated that GUS activity was localised to the mesophyll and palisade cells of the leaf. The influence of light on expression was also determined. The activity of the SRS1 promoter was strictly dependent on light, whereas that of the RBCS3C promoter appeared not to be. Both SSU promoters would be suitable for the expression of transgenes in green photosynthetic tissues of apple. Received: 15 June 1999 / Accepted: 12 August 1999  相似文献   

12.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

13.
14.
A method for early detection of T-DNA transfer   总被引:1,自引:1,他引:0  
A mannopine synthase—β-glucuronidase gene fusion,mas-uidA, was used to detect T-DNA transfer 48 hours afterA. tumefaciens infection of radish root disks. A detailed procedure for infection, tissue preparation and GUS histochemistry is given. A CaMV 35S promoter was shown to be unsuitable as it was highly expressed in the bacteria. A distinct pattern of GUS activity was found in radish roots infected with themas-uidA fusion indicating a specificity of expression in the metabolically active cambium and phloem parenchyma cells. This assay is useful for studying T-DNA transfer and host range differences amongA. tumefaciens strains.  相似文献   

15.
We have characterized the promoter specificity of theArabidopsis thaliana α1-tubulin (α 1-tub) gene by studying expression patterns of gene fusions between the 2.2 kbp 5′ upstream region of theα 1-tub gene and each of three different reporters: chloramphenical acetyltransferase, β-glucuronidase or the diphtheria toxin chain A gene. Analysis of transgenic tobacco andArabidopsis plants carrying the transgene showed that the chloramphenicol acetyltransferase and β-glucuronidase activities were not detected in any vegetative or reproductive organs except mature pollen. Transgenic tobacco plants carrying the diphtheria toxin chain A gene under the control of theα 1-tub promoter were of normal phenotype but seed fertility was drastically reduced. Furthermore, the transgene could not be transmitted to the next generation through pollen, supporting the observation that theα 1-tub promoter is active only in pollen. It was observed that the promoter activity was most active in mature pollen and decreased significantly duringin vitro pollen germination, indicating that the promoter is inactive or subdued in germinating pollen. The promoter activity was not affected by various plant growth hormones during pollen maturation.  相似文献   

16.
Seedling hypocotyls of Lithospermum erythrorhizon were infected with Agrobacterium rhizogenes (strain 15834) harboring a binary vector with an intron-bearing the β-glucuronidase (GUS) gene driven by cauliflower mosaic virus (CaMV) 35S promoter as well as the hygromycin phosphotransferase (HPT) gene as the selection marker. About 20% of the hairy roots isolated were hygromycin resistant and had co-integrated GUS and HPT genes in their Lithospermum genomic DNA. Because GUS activity was detected in almost all the hygromycin-resistant root tissues, the CaMV 35S promoter seems to be ubiquitously active in L. erythrorhizon hairy roots. In pigment production medium M9, the hairy root cultures had shikonin productivity similar to that of cell suspension cultures of Lithospermum. They also showed light-dependent inhibition of shikonin biosynthesis similar to that of Lithospermum cell cultures. These findings suggest that this hairy root system transformable with A. rhizogenes is a suitable model system for molecular characterization of shikonin biosynthesis via reverse genetics. Received: 2 March 1998 / Revision received: 25 May 1998 / Accepted: 8 July 1998  相似文献   

17.
18.
The composition of seed storage proteins is regulated by sulfur and nitrogen supplies. Under conditions of a low sulfur-to-nitrogen ratio, accumulation of the β-subunit of β-conglycinin, a sulfur-poor seed storage protein of soybean (Glycine max [L.] Merr.), is elevated, whereas that of glycinin, a sulfur-rich storage protein, is reduced. Using transgenic Arabidopsis thaliana [L.] Heynh., it was found that the promoter from the gene encoding the β-subunit of β-conglycinin up-regulates gene expression under sulfur deficiency and down-regulates gene expression under nitrogen deficiency. To obtain an insight into the metabolic control of this regulation, the concentrations of metabolites related to the sulfur assimilation pathway were determined. Among the metabolites, O-acetyl-l-serine (OAS), one of the precursors of cysteine biosynthesis, accumulated to higher levels under low-sulfur and high-nitrogen conditions in siliques of transgenic A. thaliana. The pattern of OAS accumulation in response to various levels of sulfur and nitrogen was similar to that of gene expression driven by the β-subunit promoter. Elevated levels of OAS accumulation were also observed in soybean cotyledons cultured under sulfur deficiency. Moreover, OAS applied to in-vitro cultures of immature soybean cotyledons under normal sulfate conditions resulted in a high accumulation of the β-subunit mRNA and protein, whereas the accumulation of glycinin was reduced. These changes were very similar to the responses observed under conditions of sulfur deficiency. Our results suggest that the level of free OAS mediates sulfur- and nitrogen-regulation of soybean seed storage-protein composition. Received: 6 February 1999 / Accepted: 16 March 1999  相似文献   

19.
Tissue-specific expression of the ORF13 promoter from Agrobacterium rhizogenes 8196 was assessed throughout the development of transgenic tobacco plants using a GUS reporter gene. ORF13 exhibited high activity in roots but with different patterns of expression. The activity of the ORF13 promoter in vascular tissues increased from the base to the tip of the stem. The ORF13 promoter is wound inducible in a limited area adjacent to the wound site. The time course of wound induction of ORF13 in transgenic tobacco containing an ORF13 promoter-GUS translational fusion was similar to that previously described for genes involved in plant defense responses. A series of 5′ deletions of the ORF13 promoter fused to the β-glucuronidase gene was examined for expression in roots and leaves of transgenic plants. Cis-acting elements that modulate quantitative expression of the transgene after wounding were detected. Received: 11 July 1996 / Accepted: 19 November 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号