首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
神经元的突触可塑性与学习和记忆   总被引:7,自引:0,他引:7  
大量研究表明,神经元的突触可塑性包括功能可塑性和结构可塑性,与学习和记忆密切相关.最近,在经过训练的动物海马区,记录到了学习诱导的长时程增强(long term potentiation,LTP),如果用激酶抑制剂阻断晚期LTP,就会使大鼠丧失训练形成的记忆.这些结果指出,LTP可能是形成记忆的分子基础.因此,进一步研究哺乳动物脑内突触可塑性的分子机制,对揭示学习和记忆的神经基础有重要意义.此外,在精神迟滞性疾病和神经退行性疾病患者脑内记录到异常的LTP,并发现神经元的树突棘数量减少,形态上产生畸变或萎缩,同时发现,产生突变的基因大多编码调节突触可塑性的信号通路蛋白,故突触可塑性研究也将促进精神和神经疾病的预防和治疗.综述了突触可塑性研究的最新进展,并展望了其发展前景.  相似文献   

2.
Wnt信号通路与大脑发育和中枢神经系统成熟密切相关,参与神经突触调节和重塑,在突触可塑性和学习记忆中有重要作用.该文综述了Wnt信号在突触结构与功能中的作用,Wnt信号途径与突触结构和神经功能的建立与维持的关系,以及Wnt信号在学习记忆相关的突触重塑与稳定中的重要作用.对Wnt信号通路的深入了解有助于理解学习记忆的结构...  相似文献   

3.
伏衬蛋白与学习记忆的突触机制   总被引:2,自引:0,他引:2  
伏衬蛋白是一种多肽聚合体,广泛存在于多种动物细胞内,在胞浆外层和质膜内侧形成一层“衬里”,并在神经元和突触后致密物质内高度浓集。80年代以来,人们对这种蛋白质的生化特性、种间分布、细胞分布以及功能作用进行了不少研究。本文对有关资料作一简要的评述,并重点介绍这种蛋白质在学习记忆突触机制中的可能作用。  相似文献   

4.
与学习记忆相关的睡眠新功能——突触稳态   总被引:2,自引:0,他引:2  
近年来的许多研究证实睡眠有利于学习和记忆.不但学习后的睡眠具有记忆巩固功能,而且学习前的睡眠对于随后的学习也是必需的.长时间觉醒学习后脑内突触连接增多、增强,导致突触空间饱和,阻碍随后继续学习.睡眠的作用是减弱突触连接到基础水平,为随后的学习记忆提供充足的空间和能量.  相似文献   

5.
神经细胞粘附分子(neural cell adhesion molecule,NCAM)是一种主要表达于神经系统的糖蛋白,通过亲同性及亲异性结合介导细胞与细胞与细胞外基质间的相互作用,参与细胞的识别,迁移,轴突生长,细胞信号转导,学习和记忆等过程。硫酸化氨基聚糖可调节脑发育中的细胞分化,轴突生长及中枢神经系统中神经元的再生,可能参与了与学习和记忆相关的神经结构功能的调节。这些作用可能与神经细胞粘附分子的亲异性结合有关。  相似文献   

6.
提出突触可塑性的一个可能的数学公式,尝试用这个公式统一地描述突触长时程增强效应和突触长时程抑制效应。  相似文献   

7.
钙依赖性突触的可塑性   总被引:3,自引:0,他引:3  
Dou Y  Yan J  Wu YY  Cui RY  Lu CL 《生理科学进展》2001,32(1):35-38
突触前和突触后细胞内钙离子([Ca^2 ]i)在短时程和长时程突触的可塑性中,发挥着重要的住处传递作用。兴奋后残留[Ca^2 ]i,可以激发短时程突触增强。突触前[Ca^2 ]i可以影响被抑制的突触前膜囊泡的更新,并准确编码突前和突触后信息,产生截然相反的长时程突触修(LTP或LTD)。  相似文献   

8.
Wu XW  Li M 《生理科学进展》2005,36(3):259-261
Eph受体酪氨酸激酶及其配体ephrin广泛参与神经系统的发育,如轴突导向、细胞迁移、体节形成和血管生成。最近研究显示的Ephephrin在突触的定位提示其与突触可塑性有关。Ephephrin对成年神经系统的可塑性、学习和记忆,以及神经损伤后的再生可能具有重要的调节作用。  相似文献   

9.
突触可塑性是学习记忆的基础,其分子机制是理解记忆形成和维持的关键,也为神经退行性疾病的预防与治疗提供了新靶点。肌球蛋白超家族广泛存在于人体各种组织细胞中,主要分为常规肌球蛋白和非常规肌球蛋白。越来越多的研究发现,非常规肌球蛋白参与了许多重要的生命活动,尤其是在神经系统对突触可塑性的调节中,起到了十分重要的作用。  相似文献   

10.
张汉斌  潘越  汪洋  杨静  马欢 《生命科学》2020,32(7):731-737
自噬是生物体内活细胞通过清除特定蛋白质和细胞器维持自身动态平衡的一个保守进程。自噬受损会导致异常蛋白累积,从而影响大脑的正常生理功能。越来越多的研究表明,神经元自噬还可以响应神经元活动,选择性靶向降解突触蛋白,进而调控突触可塑性。现对神经元自噬在突触可塑性中的具体功能及其分子机制进行综述。  相似文献   

11.
Pavlovian conditioning has been considered as one of the principal experimental approaches to understanding such complex brain functions as learning and memory. Use-dependent alterations in synaptic efficacy are believed to form the basis for these functions. The algorithm of synapse modification proposed by D. Hebb as early as 1949 is the coincident activation of pre- and postsynaptic neurons. The present review considers the evolution of experimental protocols which were used to reveal the manifestations of Hebb-type plasticity in the synaptic inputs to neocortical and hippocampal neurons. Special attention is focused on long-term modifications of synaptic efficacy in the hippocampus as a possible neuronal mechanism of learning and the role of disinhibition in their development. The effects of various neuromodulators on hippocampal long-term potentiation are considered. It is suggested that along with their involvement in disinhibition processes these substances may control the Hebb-type plasticity through intracellular second messenger systems.  相似文献   

12.
13.
14.
Synaptic plasticity: a molecular memory switch   总被引:5,自引:0,他引:5  
Recent work shows that two molecules with major roles in synaptic plasticity--CaMKII and the NMDA receptor--bind to each other. This binding activates CaMKII and triggers its autophosphorylation. In this state, it may act as a memory switch and strengthen synapses through enzymatic and structural processes.  相似文献   

15.
Beyond their well-established role as triggers for LTP and LTD of fast synaptic transmission mediated by AMPA receptors, an expanding body of evidence indicates that NMDA receptors (NMDARs) themselves are also dynamically regulated and subject to activity-dependent long-term plasticity. NMDARs can significantly contribute to information transfer at synapses particularly during periods of repetitive activity. It is also increasingly recognized that NMDARs participate in dendritic synaptic integration and are critical for generating persistent activity of neural assemblies. Here we review recent advances on the mechanisms and functional consequences of NMDAR plasticity. Given the unique biophysical properties of NMDARs, synaptic plasticity of NMDAR-mediated transmission emerges as a particularly powerful mechanism for the fine tuning of information encoding and storage throughout the brain.  相似文献   

16.
Maren S 《Neuron》2005,47(6):783-786
Do associative learning and synaptic long-term potentiation (LTP) depend on the same cellular mechanisms? Recent work in the amygdala reveals that LTP and Pavlovian fear conditioning induce similar changes in postsynaptic AMPA-type glutamate receptors and that occluding these changes by viral-mediated overexpression of a dominant-negative GluR1 construct attenuates both LTP and fear memory in rats. Novel forms of presynaptic plasticity in the lateral nucleus may also contribute to fear memory formation, bolstering the connection between synaptic plasticity mechanisms and associative learning and memory.  相似文献   

17.
18.
To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.  相似文献   

19.
Memory is the process by which organisms are able to record their experiences, and use this information to adapt their responses to the environment. As such, it is vital for survival. In recent years, the development of spatially and temporally selective techniques for the regulation of gene expression has allowed the molecular details of this process to emerge. Here we review the molecular mechanisms thought to underlie memory acquisition and storage, as well as discuss recent evidence regarding the mechanisms of subsequent memory consolidation.  相似文献   

20.
Synaptic plasticity plays a central role in the study of neural mechanisms of learning and memory. Plasticity rules are not invariant over time but are under neuromodulatory control, enabling behavioral states to influence memory formation. Neuromodulation controls synaptic plasticity at network level by directing information flow, at circuit level through changes in excitation/inhibition balance, and at synaptic level through modulation of intracellular signaling cascades. Although most research has focused on modulation of principal neurons, recent progress has uncovered important roles for interneurons in not only routing information, but also setting conditions for synaptic plasticity. Moreover, astrocytes have been shown to both gate and mediate plasticity. These additional mechanisms must be considered for a comprehensive mechanistic understanding of learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号